Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T06:39:29.225Z Has data issue: false hasContentIssue false

Camanchacaite, chinchorroite, espadaite, magnesiofluckite, picaite and ríosecoite: six new hydrogen-arsenate minerals from the Torrecillas mine, Iquique Province, Chile

Published online by Cambridge University Press:  08 May 2019

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
Aaron J. Celestian
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Maurizio Dini
Affiliation:
Pasaje San Agustin 4045, La Serena, Chile
Arturo A. Molina Donoso
Affiliation:
Los Algarrobos 2986, Iquique, Chile
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new minerals camanchacaite, NaCaMg2[AsO4]2[AsO3(OH)2], chinchorroite, Na2Mg5(As2O7)2(AsO3OH)2(H2O)10, espadaite, Na4Ca3Mg2[AsO3(OH)]2[AsO2(OH)2]10(H2O)6·H2O, magnesiofluckite, CaMg(AsO3OH)2(H2O)2, picaite, NaCa[AsO3OH][AsO2(OH)2] and ríosecoite, Ca2Mg(AsO3OH)3(H2O)2, were discovered on two closely related specimens collected from the Torrecillas mine, Iquique Province, Chile. These minerals occur as secondary phases on massive quartz–hematite also in association with anhydrite, gypsum, halite and talmessite. Camanchacaite is monoclinic, C2/c, a = 12.470(9), b = 12.554(9), c = 6.848(9) Å, β = 113.75(2)°, V = 981.3(16) Å3 and Z = 4. It has a protonated alluaudite-type structure. Chinchorroite is triclinic, P$\bar{1}$, a = 8.7777(2), b = 8.8570(3), c = 9.7981(7) Å, α = 91.097(6), β = 110.544(8), γ = 103.167(7)°, V = 690.43(7) Å3 and Z = 1. The structure contains abbreviated chains of five edge-sharing Mg octahedra that are linked by pyroarsenate and hydrogen-arsenate groups. Espadaite is orthorhombic, Ccca, a = 12.3649(10), b = 22.181(2), c = 18.3292(13) Å, V = 5027.1(7) Å3 and Z = 4. The structure is based on heteropolyhedral sheets of formula {Ca3Mg2[AsO3(OH)]2[AsO2(OH)2]10}4− that contain large voids; NaO6 polyhedra occupy the interlayer region. Magnesiofluckite is triclinic, P$\bar{1}$, a = 8.4143(6), b = 7.5321(5), c = 6.8917(4) Å, α = 82.477(6), β = 97.682(6), γ = 95.379(6)°, V = 427.84(5) Å3 and Z = 2. It is isostructural with fluckite. Picaite is monoclinic, P21/c, a = 7.2474(4), b = 14.6547(7), c = 7.2624(5) Å, β = 99.520(7)°, V = 760.70(8) Å3 and Z = 4. The structure contains chains of edge-sharing Na− and Ca octahedra with bridging AsO3(OH) and AsO2(OH)2 tetrahedra. Ríosecoite is triclinic, P$\bar{1}$, a = 6.8110(9), b = 7.3156(12), c = 11.7773(17) Å, α = 83.466(6), β = 84.394(6), γ = 79.779(6)°, V = 571.95(15) Å3 and Z = 2. The structure contains tetramers of edge-sharing CaO7 and CaO8 polyhedra linked by MgO6 octahedra and bridging AsO3(OH) groups to form chains.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Arriaza, B., Amarasiriwardena, D., Cornejo, L., Standen, V., Byrne, S., Bartkus, L. and Bandak, B. (2010) Exploring chronic arsenic poisoning in pre-Columbian Chilean mummies. Journal of Archeological Science, 37, 12741278.Google Scholar
Bari, H., Cesbron, F., Permingeat, F. and Pillard, F. (1980) La fluckite, arséniate hydraté de calcium et manganèse CaMnH2(AsO4)2·2H2O, une nouvelle espèce minérale. Bulletin de Minéralogie, 103, 122128.Google Scholar
Buchelt, M. and Tellez, C. (1988) The Jurassic La Negra Formation in the area of Antofagasta, north Chile (lithology, petrography, geochemistry). Pp. 171182 in: The southern Central Andes (Bahlburg, H., Breitkreuz, C. and Giese, P., editors). Lecture Notes in Earth Sciences 17. Springer, Berlin–Heidelberg–New York.Google Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357361.Google Scholar
Byrne, S., Amarasiriwardena, D., Bandak, B., Bartkus, L., Kane, J., Jones, J., Yañez, J., Arriaza, B. and Cornejo, L. (2010) Were Chinchorros exposed to arsenic? Arsenic determination in Chinchorro mummies' hair by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). Microchemical Journal, 94, 2835.Google Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.Google Scholar
Caracas, R. and Bobocioiu, E. (2011) The WURM project – a freely available web-based repository of computed physical data for minerals. American Mineralogist, 96, 437443.Google Scholar
Catti, M., Chiari, G. and Ferraris, G. (1980) Fluckite, CaMn(HAsO4)2·2H2O, a structure related by pseudo-polytypism to krautite MnHAsO4·2H2O. Bulletin de Minéralogie, 103, 129134.Google Scholar
Cereceda, P. and Schemenauer, R.S. (1991) The occurrence of fog in Chile. Journal of Applied Meteorology, 30, 10971105.Google Scholar
Cooper, M.A., Hawthorne, F.C., Ball, N.A., Ramik, R.A. and Roberts, A.C. (2009) Groatite, NaCaMn2+2(PO4)[PO3(OH)]2, a new mineral species of the alluaudite group from the Tanco pegmatite, Bernic Lake, Manitoba, Canada: description and crystal structure. The Canadian Mineralogist, 47, 12251235.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341344.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García, F. (1967) Geologia del Norte Grande de Chile. Simposio Geosinclinal Andino, Sociedad Geológica de Chile Publicaciones, 3, 138 pp.Google Scholar
Goudie, A.S., Wright, E. and Viles, H.A. (2002) The roles of salt (sodium nitrate) and fog in weathering: a laboratory simulation of conditions in the northern Atacama Desert, Chile. Catena, 48, 255266.Google Scholar
Gutiérrez, H. (1975) Informe Sobre una Rápida Visita a la Mina de Arsénico Nativo, Torrecillas. Instituto de Investigaciones Geológicas, Iquique, Chile.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Mills, S.J., Rumsey, M.S., Spratt, J. and Favreau, G. (2012) The crystal structure determination and redefinition of matulaite, Fe3+Al7(PO4)4(PO3OH)2(OH)8(H2O)8·8H2O. Mineralogical Magazine, 76, 517534.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2013) Magnesiokoritnigite, Mg(AsO3OH)·H2O, from the Torrecillas mine, Iquique Province, Chile: the Mg-analogue of koritnigite. Mineralogical Magazine, 77, 30813092.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2014 a) Torrecillasite, Na(As,Sb)3+4O6Cl, a new mineral from the Torrecillas mine, Iquique Province, Chile: description and crystal structure. Mineralogical Magazine, 78, 747755.Google Scholar
Kampf, A.R., Mills, S.J., Hatert, F., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2014 b) Canutite, NaMn3[AsO4]2[AsO2(OH)2], a new protonated alluaudite-group mineral from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 78, 787795.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2016 a) Gajardoite, KCa0.5As3+4O6Cl2·5H2O, a new mineral related to lucabindiite and torrecillasite from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 12651272.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2016 b) Chongite, Ca3Mg2(AsO4)2(AsO3OH)2·4H2O, a new arsenate member of the hureaulite group from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 12551263.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2017 a) Juansilvaite, Na5Al3[AsO3(OH)]4[AsO2(OH)2]2(SO4)2·4H2O, a new arsenate-sulfate from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 81, 619628.Google Scholar
Kampf, A.R., Mills, S.J., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2017 b) Currierite, Na4Ca3MgAl4(AsO3OH)12·9H2O, a new acid arsenate with ferrinatrite-like heteropolyhedral chains from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 81, 11411149.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2017 c) Magnesiocanutite, NaMnMg2[AsO4]2[AsO2(OH)2], a new protonated alluaudite-group mineral from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 81, 15231531.Google Scholar
Kampf, A.R., Chukanov, N.V., Möhn, G., Dini, M., Molina Donoso, A.A. and Friis, H. (2018 a) Cuatrocapaite-(NH4), IMA 2018-083. CNMNC Newsletter No. 46, December 2018, page 1371; Mineralogical Magazine, 82, 13691379.Google Scholar
Kampf, A.R., Chukanov, N.V., Möhn, G., Dini, M., Molina Donoso, A.A. and Friis, H. (2018 b) Cuatrocapaite-(K), IMA 2018-084. CNMNC Newsletter No. 46, December 2018, page 1372; Mineralogical Magazine, 82, 13691379.Google Scholar
Kampf, A.R., Nash, B.P. and Molina Donoso, A.A. (2019) Mauriziodiniite, IMA 2019-036. CNMNC Newsletter No. 51; Mineralogical Magazine, 83, doi: 10.1180/mgm.2019.58.Google Scholar
Keller, P. and Hess, H. (1988) Die kristallstrukturen von O'Danielit, Na(Zn,Mg)3H2(AsO4)3, und Johillerit, Na(Mg,Zn)3Cu(AsO4)3. Neues Jahrbuch für Mineralogie, Monatshefte, 1988, 395404.Google Scholar
Magalhães, M.C.F., de Jesus, J.D.P. and Williams, P.A. (1988) The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II). Mineralogical Magazine, 52, 679690.Google Scholar
Majzlan, J., Drahota, P. and Filippi, M. (2014) Parageneses and crystal chemistry of arsenic minerals. Pp. 17184 in: Arsenic: Environmental Geochemistry, Mineralogy, and Microbiology (Bowell, R.J., Alpers, C.N., Jamieson, H.E., Nordstrom, D.K. and Majzlan, J., editors). Reviews in Mineralogy and Geochemistry, 79. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Mihajlović, T., Libowitzky, E. and Effenberger, H. (2004) Synthesis, crystal structure, infrared and Raman spectra of Sr5(As2O7)2(AsO3OH). Journal of Solid State Chemistry, 177, 39633970.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2016) Calciojohillerite, IMA 2016-068. CNMNC Newsletter No. 34, December 2016, page 1317; Mineralogical Magazine, 80, 13151321.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantification (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Rech, J.A., Quade, J. and Hart, W.S. (2003) Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochimica et Cosmochimica Acta, 67, 575586.Google Scholar
Roberts, A.C., Burns, P.C., Gault, R.A., Criddle, A.J. and Feinglos, M.N. (2004) Petewilliamsite, (Ni,Co)30(As2O7)15, a new mineral from Johanngeorgenstadt, Saxony, Germany: description and crystal structure. Mineralogical Magazine, 68, 231240.Google Scholar
Sarp, H. and Černy, R. (2001) Theoparacelsite, Cu3(OH)2As2O7, a new mineral: its description and crystal structure. Arkives de Science Genève, 54, 714.Google Scholar
Sheldrick, G.M. (2015 a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015 b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Tapia, J., González, R., Townley, B., Oliveros, V., Álvarez, F., Aguilar, G., Menzies, A. and Calderón, M. (2018) Geology and geochemistry of the Atacama Desert. Antonie Van Leeuwenhoek, 111, 12731291.Google Scholar
Wang, F., Michalski, G., Seo, J. and Ge, W. (2014) Geochemical, isotopic, and mineralogical constraints on atmospheric deposition in the hyper-arid Atacama Desert, Chile. Geochimica et Cosmochimica Acta, 135, 2948.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 694.6 KB