Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T18:34:54.478Z Has data issue: false hasContentIssue false

Cation distribution in some natural spinels from X-ray diffraction and Mössbauer spectroscopy

Published online by Cambridge University Press:  05 July 2018

Susanna Carbonin
Affiliation:
Dipartimento di Mineralogia e Petrologia, Università di Padova, Corso Garibaldi 37, 35122 Padua, Italy
Umberto Russo
Affiliation:
Dipartimeuto di Chimica Inorganica, Metallorganica e Analitica, Università di Padova, Via Loredan 4, 35131 Padua, Italy
Antonio Della Giusta
Affiliation:
Dipartimento di Mineralogia e Petrologia, Università di Padova, Corso Garibaldi 37, 35122 Padua, Italy

Abstract

Three natural spinels of different places of occurrence and compositions were investigated by means of microprobe chemical analysis, single crystal X-ray diffraction and Mössbauer spectroscopy. All cation distributions between T and M sites were calculated from microprobe and XRD experimental data, by means of a mathematical model with appropriate assumptions. Fe2+ and Fe3+ assignments calculated in this way were compared with those observed in Mössbauer spectra. The satisfactory agreement found proves, at least in the samples studied, the reliability of the model and the assumptions used. In the spinels examined, such results show Fe2+ and Fe3+ virtually ordered in T and M sites respectively. Mössbauer data also revealed Fe2+ in different tetrahedral sites due to the next-nearest neighbour effect, probably as a consequence of spinel genetic conditions.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bancroft, G.M., Osborne, M.D. and Fleet, M.E. (1983) Next-nearest neighbour effects in the Mossbauer spectra of Cr-spinels: an application of partial quadrupole splittings. Solid State Comm., 47, 623–5.CrossRefGoogle Scholar
Blessing, R.H., Coppens, P. and Becker, P. (1972) Computer analysis of step-scanned X-ray data. J. Appl. Crystallogr., 7, 488–92.CrossRefGoogle Scholar
Comin-Chiaramonti, P., Demarchi, G., Siena, F. and Sinigoi, S. (1982) Relazioni tra fusione e deforma- zione nella peridotite di Balmuccia (Ivrea-Verbano). Rend. Soc. ItaL Mineral. Petrol., 38, 685700.Google Scholar
Della Giusta, A., Carbonin, S. and Ottonello, G. (1996) Temperature-dependent disorder in natural Mg-AI- Fe2+-Fe3+ spinel. Mineral Mag. in press.CrossRefGoogle Scholar
Dyar, M.D., McGuire, A.V. and Ziegler, R.D. (1989) Redox equilibria and crystal chemistry of coexisting minerals from spinel lherzolite mantle xenoliths. Amer, Mineral., 74, 969–80.Google Scholar
Hafner, S. (1960) Metalloxyde mit Spinellstruktur. Schweiz. Mineral. Petrol. Mitt, 40, 208–40.Google Scholar
Mason, T.O. (1987) Cation intersite distributions in ironbearing minerals via electrical conductivity/Seebeck effect. Phys. Chem. Minerals, 14, 156–62.CrossRefGoogle Scholar
Millard, R.L., Peterson, R.C. and Hunter, B.K. (1992) Temperature dependence of cation disorder in MgAl2O4 spinel using 27A1 and 170 magic-angle spinning NMR. Amer. Mineral., 11, 44—52.Google Scholar
Mitra, S., Pal, T. and Pal, T. (1991) Petrogenetic implication of the Mossbauer hyperfine parameters of Fe3+-chromites from Sukinda (India). Mineral. Mag., 55, 535–42.CrossRefGoogle Scholar
Nell, J., Wood, B.J. and Mason, T.O. (1989) High temperature cation distributions in Fe3O4-MgAl2O4- MgFe2O4-FeAl2O4 spinels from thermopower and conductivity measurements. Amer. Mineral., 74, 339–51.Google Scholar
North, A.C.T., Phillips, D.C. and Scott-Mattews, F. (1968) A semi-empirical method of absorption correction, Acta Crystallogr. A24, 351—2.Google Scholar
O’Neill, H.St.C. and Navrotsky, A., (1983) Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution. Amer. Mineral., 68, 181–94.Google Scholar
O’Neill, H.St.C. and Navrotsky, A. (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. Amer. Mineral, 69, 733–53.Google Scholar
O’Neill, H.St.C., Dollase, W.A. and Ross, C.R. II (1991) Temperature dependence of the cation distribution in Nickel Aluminate (NiAl2O4) spinel: a powder XRD study. Phys. Chem. Minerals, 18, 302–19.CrossRefGoogle Scholar
O’Neill, H.St.C., Annersten, H. and Virgo, D. (1992) The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mossbauer spectroscopy. Amer. Mineral, 77, 725–40.Google Scholar
Osborne, M.D., Fleet, M.E. and Bancroft, G.M. (1981) Fe2+ -Fe3+ ordering in chromite and Cr-bearing spinels. Contrib. Mineral Petrol, 77, 251–5.CrossRefGoogle Scholar
Ottonello, G. (1986) Energetics of multiple oxides with spinel structure. Phys. Chem. Minerals, 13, 7990.CrossRefGoogle Scholar
Peterson, R.C., Lager, G.A. and Hitterman, R.L. (1991) A time-of-flight neutron powder diffraction study of MgAl2O4 at temperatures up to 1273 K. Amer. Mineral., 76, 1455–8.Google Scholar
Pizzolon, M. (1991) Cristallochimica e Modellizi.az.ione di Spinelli di Mg-Al-Fe-Cr. Thesis, University of Padova, Padua, Italy.Google Scholar
Robbins, M., Wertheim, G.K., Sherwood, R.C. and Buchanan, D.N.E. (1971) Magnetic properties and site distribution in the system FeCr2O4 - Fe3O4. Phys. Chem. Solids, 32, 717–29.CrossRefGoogle Scholar
Roelofsen, J.N., Peterson, R.C. and Raudsepp, M. (1992) Structural variation in nickel aluminate spinel (NiAl2O4). Amer. Mineral., 77, 522–8.Google Scholar
Ruby, S.L. (1973) Why MISFIT when you already have X2? Mossbauer Effect Methodology, 8, 263–76.CrossRefGoogle Scholar
Sawatzky, G.A., van der Wonde, F. and Morrish, A.H. (1969) Recoiless-fraction ratios for 57Fe in octahedral and tetrahedral sites of a spinel and a garnet. Phys. Rev., 183, 383–6.CrossRefGoogle Scholar
Sheldrick, G.M. (1993) SHELX-93. Program for crystal structure refinement, University of Gottingen, Germany.Google Scholar
Skogby, H., Annersten, H., Domeneghetti, M.C., Molin, G.M. and Tazzoli, V. (1992) Iron distribution in orthopyroxene: a comparison of Mossbauer spectroscopy and X-ray refinement results. Eur. J. Mineral, 4, 441–52.CrossRefGoogle Scholar
Toffanin, N. (1989) Studio Cristallochimico di Cromiti in Complessi Stratiformi ed Ofiolitici. Thesis, University of Padova, Padua, Italy.Google Scholar
Waerenborgh, J.C., Figueiredo, M.O., Cabral, J.M.P. and Pereira, I.C.J. (1994) Powder XRD structure refinements and 57Fe M6ssbauer effect study of synthetic Zn1_xFexAl2O4 (0 < x≤ 1) spinels annealed at different temperatures. Phys. Chem. Minerals, 21, 460–8.CrossRefGoogle Scholar
Wood, B.J. and Virgo, D. (1989) Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mossbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta, 53, 1277–91.CrossRefGoogle Scholar