Published online by Cambridge University Press: 05 July 2018
Dellaite crystals of close to end-member composition, Ca6(Si2O7)(SiO4)(OH)2, and with ∼1.5 wt.% Cl. yielding Ca6(Si2O7)(SiO4)(OH)1.75Cl0.25 have been found in skarns within the gabbroid rocks of the Birkhin complex (Eastern Siberia, Russia). The greatest Cl content analysed in a dellaite domain in this skarn is 5.2 wt.% Cl corresponding to 0.8 Cl p.f.u. Dellaite occurs in altered merwmite-larnite-bredigite-gehlenite skarns and also in calcio-olivine skarns with residual larnite. The crystal structures of Cl-free and Cl-bearing (∼1.5 wt.% Cl) dellaite have been refined, including hydrogen positions, from single-crystal X-ray data to R1 = 3.7 and 3.8%, respectively. In addition, both dellaite varieties were studied by Raman spectroscopy indicating stronger hydrogen bonds for the Cl-bearing sample, which agrees with the structural data. Cl is strongly selective and enriches at one (O6) of the two OH positions allowing for the formation of a stronger hydrogen bond O8—H8…C16 compared to O8—H8…O6. Raman spectra of the domain with ∼0.8 Cl p.f.u. confirm the general enhancement of a low-frequency band in the OH range suggesting the dominance of the O—H…Cl hydrogen bond systems.
Dellaite and killalaite, Ca3.2(H0.6Si2O7)(OH), have related modular structures, differentiated only by the Si2O7 units in killalaite and alternating Si2O7 and SiO4 units in dellaite. The similarity in cell dimensions and chemical composition suggests that trabzonite, Ca4Si3Oi0-2H2O, with Si3Oi0 trimers also belongs to the same family of structures.