Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T16:30:21.178Z Has data issue: false hasContentIssue false

Chromian tourmaline and associated Cr-bearing minerals from the Nevado-Fildbride Complex (Betic Cordilleras, SE Spain)

Published online by Cambridge University Press:  05 July 2018

J. Torres-Ruiz*
Affiliation:
Departameno de Mineralogía y Petrología, Facultad de Ciencias, Universidad, de Granada, Fuentenueva s/n, 18002 Granada, Spain
A. Pesquera
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del Pais Vasco 644, 48080 Bilbao, Spain
V. López Sánchez-Vizcaíno
Affiliation:
Departamento de Geología, Universidad de Jaén, E.U. Politécnica de Linares, C/ Alfonso X el Sabio 28, 23700 Linares, Spain
*
* E-mail: jotorres@ugr.e

Abstract

Chromian tourmaline, in association with other Cr-bearing minerals (amphibole, mica, epidote, chlorite, titanite, rutile and chromian spinel), occurs in fine calc-schist levels within metacarbonate rocks from the Nevado-Filabride Complex, SE Spain. Electron microprobe analyses of tourmaline and coexisting minerals document both chemical differences dependent on the host-rock type and an irregular distribution of Cr at grain scale. Tourmaline is Na-rich dravite, with average Mg/(Mg+Fe) ratios of 0.83 and 0.63 a.p.f.u. and Cr contents of 0.32 and 0.18 a.p.f.u., in dolomitic and ankeritic marbles, respectively. Tourmaline contains small but significant concentrations of Zn (av. 0.01 a.p.f.u.) and in ankeritic marble it also contains Ni (av. 0.04 a.p.f.u.). Zn-rich chromian spinel appears as small relict inclusions in silicates, with average Cr, Fe, Al and Zn contents of 1.201, 1.241, 0.411 and 0.107 a.p.f.u., respectively. Amphibole, epidote, mica and chlorite show average Cr contents of 0.088, 0.138, 0.115 and 0.267 a.p.f.u., respectively, in dolomitic marbles, and 0.103, 0.078, 0.065 and 0.185 a.p.f.u., respectively, in ankeritic marbles. Cr-silicates formed through metamorphic reactions involving detrital Cr-rich spinel, in addition to clay minerals and carbonates. The B necessary to form tourmaline was probably derived from the leaching of underlying evaporitic rocks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashley, P.M. and Martyn, J.E. (1987) Chromium-bearing minerals from a metamorphosed hydro-thermal alteration zone in the Archaean of eastern Australia. Neues Jahrbuch für Mineralogie, Abhandlungen, 157, 81111.Google Scholar
Bakker, H.E., De Jong, K., Helmers, H. and Biermann, C. (1989) The geodynamic evolution of the internal zone of the Betic Cordilleras (south-east Spain): A model based on structural analysis and geothermo-barometry. Journal of Metamorphic Geology, 7, 359381.CrossRefGoogle Scholar
Barnes, S.J. (2000) Chromite in Komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41, 387409.CrossRefGoogle Scholar
Bernardelli, P., Castelli, D. and Rossetti, P. (2000) Tourmaline-rich ore-bearing hydrothermal system of lower Valle del Cervo (western Alps, Italy). Field relationships and petrology. Schweizerisches M inera log ische und P etrogrograph ische Mitteilungen, 80, 257277.Google Scholar
Brown, C.E. and Ayuso, R.A. (1985) Significance of tourmaline-rich rocks in the Grenville complex of St. Lawrence County, New York. US Geological Survey Bulletin, 1626-C.Google Scholar
Byerly, G.R. and Pamer, M.R. (1991) Tourmaline mineralization in the Barberton greenstone belt, South Africa: early Archean metasomatism by evaporite-derived boron. Contributions to Mineralogy and Petrology, 107, 387402.CrossRefGoogle ScholarPubMed
Challis, A., Grapes, R. and Palmer, K. (1995) Chromian muscovite, uvarovite, and zincian chromite: products of regional metasomatism in northwest Nelson, New Zealand. The Canadian M ineralogist, 33, 12631284.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-forming Minerals, 2nd edition. Longman, Harlow, Essex, UK, 696 pp.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1997) Rockforming Minerals. Volume IB: Disilicates and Ring Silicates . Geological Society, London, 629 pp.Google Scholar
Devaraju, T., Raith, M.M. and Spiering, B. (1999) Mineralogy of the Archean barite deposit of Ghattihosahalli, Karnataka, India. American Mineralogist, 37, 603617.Google Scholar
Diaz de Federico, A. (1980) Estudio geologico del Complejo de Sierra Nevada en la transversal del Puerto de la Ragua (Cordillera B etica ). Unpublished PhD thesis, Universidad de Granada, Spain, 436 pp.Google Scholar
Dutrow, B.L., Foster, C.T., Jr. and Henry D.J. (1999) Tourmaline-rich pseudomorphs in sillimanite zone metapelites: Demarcation of an infiltration front. American Mineralogist, 84, 794805.CrossRefGoogle Scholar
Egeler, C.G. and Simon, O.J. (1969) Orogenic evolution of the Betic Zone (Betic Cordilleras, Spain), with emphasis on the nappe structures. Geologie en Mijnbouw, 48, 296305.Google Scholar
Eugster, H.P. (1980) Geochemistry of evaporitic lacustrine deposits. Annual Reviews in Earth and Planetary Sciences, 8, 3563.CrossRefGoogle Scholar
Foit, F.F., Jr., Fuchs, Y. and Myers, P.E. (1989) Chemistry of alkali-deficient schorls from two tourmaline-dumortierite deposits. American Mineralogist, 74, 13171324.Google Scholar
Fuchs, Y., Lagache, M. and Linares, J. (1998) Fetourmaline synthesis under different T and fo2 conditions. American Mineralogist, 83, 525534.CrossRefGoogle Scholar
Galindo Zaldívar, J., González-Lodeiro, F. and Jabaloy, A. (1989) Progressive extensional shear structures in a detachment contact in the western Sierra Nevada (Betic Cordillera, Spain). Geodynamica Acta, 3, 7385.CrossRefGoogle Scholar
García-Casco, A., Sánchez-Navas, A. and Torres-Roldán, R.F. (1993) Disequilibrium decomposition and breakdown of muscovite in high P-T gneisses, Betic alpine belt (southern Spain). American Mineralogist, 78, 158177.Google Scholar
Gil Ibarguchi, J.I., Mendia, M. and Girardeu, J. (1991) Mg- and Cr-rich staurolite and Cr-rich kyanite in high-pressure ultrabasic rocks (Cabo Ortegal, northwestern Spain). American Mineralogist, 76, 501511.Google Scholar
Gómez-Pugnaire, M.T. and Fernández Soler, J.M. (1987) High-pressure metamorphism in metabasites from the Betic Cordilleras (Spain S.E.) and its evolution during the Alpine orogeny. Contributions to Mineralogy and Petrology, 95, 231244.CrossRefGoogle Scholar
M.T., Gómez-Pugnaire, Braga, J.C., Martín, J.M., Sassi, F.P. and del Moro, A. (2000) Regional implications of the Palaeozoic age for the Nevado-Filábride Cover of the Betic Cordillera , Spain. Schweizerisches Mineralogische und Petro- graphisches Mitteilungen, 80, 4552.Google Scholar
Gourdant, J.-P., Robert, J.L., Abs-Wurmbach, I. and Velickov, B. (1998) Ni-tourmalines: syntheses in the Na2O-MgO-NiO-Al2O3-B2O3-SiO2-H2O system, and FTIR study on the cation site-occupancies. EMPG-VII, Orléans. Terra Nova Supplement, 10, 22.Google Scholar
Grice, J.D. and Ercit, T.S. (1993) Ordering ofFe and Mg in the tourmaline crystal structure: The correct formula. Neues Jahrbuch für Mineralogie Abhandlungen, 165, 245266.Google Scholar
Grundmann, G. and Morteani, G. (1989) Emerald mineralization during regional metamorphism: the Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) deposits. Economic Geology, 84, 18351849.CrossRefGoogle Scholar
Güven, N. (1988) Smectites. Pp. 497559 in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Hawthorne, F.C., MacDonald, D.J. and Burns, P.C. (1993) Reassignment of cation site occupancies in tourmaline: Al-Mg disorder in the crystal structure of dravite. American Mineralogist, 78, 265270.Google Scholar
Hawthorne, F.C. and Henry, D.J. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201215.CrossRefGoogle Scholar
Henry, D.J. and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. Pp. 503–557 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33. Mineralogical Society of America, Washington, D.C.Google Scholar
Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 115.Google Scholar
Hughes, J.M., Ertl, A., Dyar, M.D., Grew, E.S., Shearer, C.K., Yates, M.G. and Guidotti, C.V. (2000) Tetrahedral coordinated boron in a tourmaline: boron-rich olenite from Stoffhütte, Koralpe, Austria. The Canadian Mineralogist, 38, 861868.CrossRefGoogle Scholar
Jan, M.Q., Kempe, D.R.C. and Symes, R.F. (1972) A chromian tourmaline from Swat, West Pakistan. Mineralogical Magazine, 38, 756759.CrossRefGoogle Scholar
Jiang, S.-Y., Palmer, M.R., Slack, J.F. and Shaw, D.R. (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Economic Geology, 93, 4767.CrossRefGoogle Scholar
Kawakami, T. (2001) Tourmaline breakdown in the migmatite zone of the Ryoke metamorphic belt, SW Japan. Journal of Metamorphic Geology, 19, 6175.CrossRefGoogle Scholar
Kazachenko, V.T., Butsik, L.A., Sapin, V.I., Kitaev, I.V., Barinov, N.N. and Narnov, G.A. (1993) Vanadian-chromian tourmaline and vanadian muscovite in contact-metamorphosed carbonaceous rocks, P rim orye, Russia. The Canadian Mineralogist, 31, 347356.CrossRefGoogle Scholar
King, R.W. and Kerrich, R. (1989) Chromian dravite associated with ultramafic-rock-hosted archean lode gold deposits, Timmins-Porcupine district, Ontario. The Canadian Mineralogist, 27, 419426.Google Scholar
Kyle, J.R. (1991) Evaporites, evaporitic processes and mineral resources. Pp. 477533 in: Evaporites, Petroleum and Mineral Resources (Melvin, J.L., editor). Amsterdam, Elsevier.CrossRefGoogle Scholar
Leeman, W.P. and Sisson, V.B. (1996) Geochemistry of boron and its implications for crustal and mantle processes. Pp. 645707 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
López Sánchez-Vizcaíno, V., Franz, G. and Gómez- Pugnaire, M.T. (1995) The behavior of Cr during metamorphism of carbonate rocks from the Nevado- Filabride complex, Betic Cordilleras, Spain. The Canadian Mineralogist, 33, 85104.Google Scholar
Martín-Ramos, J.D. and Rodriguez Gallego, M. (1982) Chromian mica from Sierra Nevada, Spain. Mineralogical Magazine, 46, 269272.CrossRefGoogle Scholar
Martínez Martínez, J.M. and Azañón, J.M. (1997) Mode of extensional tectonics in the southeastern Betics (SE Spain): Implications for the tectonic evolution of the peri-Alboran orogenic system. Tectonics, 16, 205225.CrossRefGoogle Scholar
Michailidis, K., Sklavounos, S. and Plimer, I. (1995) Chromian dravite from the chromite ores of Vavdos area, Chalkidiki peninsula, Northern Greece. Neues Jahrbuch für Mineralogie, Monatshefte, 513–528.Google Scholar
Mogessie, A., Purtscheller, F. and Tessadri, R. (1988) Chromite and chrome spinel occurrences from metacarbonates of the Oetztal-Stubai Complex (northern Tyrol, Austria). Mineralogical Magazine, 52, 229236.CrossRefGoogle Scholar
Oberhänsli, R., Wendt, A.S., Goffe, B. and Michard, A. (1999) Detrital chromites in metasediments of the East-Arabian continental margin in the Saih Hatat area: constraints for the palaeogeographic setting of the Hawasina and Semail basins (Oman Mountains). International Journal of Earth Sciences, 88, 1325.Google Scholar
Pan, Y. and Fleet, M.E. (1991) Barian feldspar and barian-chromian muscovite from the Hemlo area, Ontario. The Canadian Mineralogist, 29, 481498.Google Scholar
Plimer, I.R. (1994) Strata-bound scheelite in meta- evaporites, Broken Hill, Australia. Economic Geology, 89, 423437.CrossRefGoogle Scholar
J.L., Pouchou and Pichoir, F. (1985) ‘PAP’ (ϕρπ) procedure for improved quantitative microanalysis. P. 104 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco.Google Scholar
Puga, E., Reyes, E., Caballero, E., Tendero, J.A., Nieto, J.M. and Díaz de Federico, A. (1992) Caracterización preliminar del ambiente de génesis de la secuencia sedimentaria de las ofiolitas Béticas y de la Formación Soportujar mediante isótopos de oxígeno y carbono. III Congreso de Geologia España, I, 362366.Google Scholar
Puga, E., Díaz de Federico, A. and Fontboté, J.M. (1974) Sobre la individualización y sistematización de las unidades profundas de la zona Béitica. Estudios Geológicos, 30, 543548.Google Scholar
Schreyer, W. (1977) Whiteschists: their compositions and pressure-temperature regimes based on experimental, field, and petrographic evidence. Tectonophysics, 43, 127144.CrossRefGoogle Scholar
Schreyer, W., Werding, G. and Abraham, K. (1981) Corundum-fuchsite rocks in greenstone belts of southern Africa: petrology, geochemistry, and possible origin. Journal of Petrology, 22, 191231.CrossRefGoogle Scholar
Slack, J.F., Herriman, N., Barnes, R.G. and Plimer, I.R. (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology, 12, 713716.2.0.CO;2>CrossRefGoogle Scholar
Slack, J.F., Palmer, M.R., Stevens, B.P.J. and Barnes, R.G. (1993) Origin and significance of tourmaline- rich rocks in the Broken Hill district, Australia. Economic Geology, 88, 505541.CrossRefGoogle Scholar
Sperlich, R., Gieré, R. and Frey, M. (1996) Evolution of compositional polarity and zoning in tourmaline during prograde metamorphism of sedimentary rocks in the Swiss Central Alps. American Mineralogist, 81, 12221236.CrossRefGoogle Scholar
Tagg, S.L., Cho, H., Dyar, M.D. and Grew, E.S. (1999) Tetrahedral boron in naturally occurring tourmaline. American Mineralogist, 84, 14511455.CrossRefGoogle Scholar
Torres-Ruiz, J., Pesquera, A., GilCrespo, P.P. and Velilla, N. (2003) Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, southeastern Spain), (in press).CrossRefGoogle Scholar
Treloar, P.J. (1987) The Cr-minerals of Outokumpu. Their chemistry and significance. Journal of Petrology, 28, 867886.CrossRefGoogle Scholar
Vissers, R.L.M. (1981) A structural study of the central Sierra de los Filabres (Betic Zone, SE Spain), with emphasis on deformational processes and their relation to the Alpine metamorphism. GUA Papers of Geology Series, I, 1154.Google Scholar
Voet, H.W. (1967) Geological investigations in the Northern Sierra de Los Filabres around Macael and Cóbdar, southeastern Spain. PhD thesis, Amsterdam University, The Netherlands.Google Scholar
Wodara, U. and Schreyer, W. (2001) X-site vacant Al- tourmaline: a new synthetic end-member. European Journal of Mineralogy, 13, 521532.CrossRefGoogle Scholar
Wylie, A.G., Candela, P.A. and Burke, T.M. (1987) Compositional zoning in unusual Zn-rich chromite from the Sykesville district of Maryland and its bearing on the origin of the ‘ferritchromit’. American Mineralogist, 72, 413422.Google Scholar
Zane, A. and Weiss, Z. (1998) A procedure for classification of rock-forming chlorites based on microprobe data. Rendiconti Lincei Scienze Fisiche e Naturali, 9, 5156.CrossRefGoogle Scholar