Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T05:16:38.547Z Has data issue: false hasContentIssue false

Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitutions Al(Nb,Ta)Ti—2, Al(F,OH)(TiO)—1 and SnTi—1

Published online by Cambridge University Press:  05 July 2018

J. Cempírek*
Affiliation:
Department of Mineralogy and Petrography, Moravian Museum, Zelnýtrh 6, 659 37 Brno, Czech Republic
S. Houzar
Affiliation:
Department of Mineralogy and Petrography, Moravian Museum, Zelnýtrh 6, 659 37 Brno, Czech Republic
M. Novák
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
*

Abstract

Euhedral crystals of complexly zoned niobian titanite (up to 0.3 mm) are enclosed in hedenbergite (Hd53—81Di15—43Jh3-5) and quartz from a hedenbergite vein skarn at Kamenne doly near Pisek, Czech Republic. They are associated with minor clinozoisite-epidote (Ps3—22), calcite, plagioclase (An95). scapolite (Me80—82), scheelite, pyrrhotite, fluorapatite, arsenopyrite, native bismuth and Bi,Te-minerals. The following textural and compositional subtypes were recognized: (I) Nb-rich titanite, (II) Nb-moderate titanite in the central zone, (III) Nb-poor, Sn-enriched titanite and (IV) Nb-poor, Al,F-rich titanite in the outer zone. The substitution Al(Nb,Ta)Ti—2 is dominant in subtypes I and II, the titanite subtype I being characterized by elevated contents of Al ≤ 0.257 atoms per formula unit (a.p.f.u.), Nb (≤ 0.161 a.p.f.u.) and Ta (≤ 0.037 a.p.f.u.). Amounts of Al, Nb and Ta in subtype II are smaller and more variable. The minor substitution SnTi—1 occurs chiefly in titanite subtype III with a content of Sn ≤ 0.039 a.p.f.u.. The substitution Al(F,OH)(TiO)_i is typical for titanite subtype IV exhibiting elevated contents of Al (s£ 0.221 a.p.f.u.), F (≤ 0.196 a.p.f.u.) and Fe (≤ 0.039 a.p.f.u.).

The negative relationship of substitutions Al(F,OH)(TiO)_i vs. SnTi—1 and Al(Nb,Ta)Ti—1 is constrained chiefly by crystal structure rather than by the composition of parent medium alone. Textural relations suggest that the Nb-moderate titanite in the core zone and entire outer zone are products of fluids-induced dissolution-reprecipitation processes. The studied niobian titanite represents a new F-enriched type from a medium-grade, calc-silicate rock.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernau, R. and Franz, G. (1987) Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece. The Canadian Mineralogist, 25, 695705.Google Scholar
Bowman, J.R. (1998) Basic aspect and applications of phase equilibria in the analysis of metasomatic Ca-Mg-Al-Fe-Si skarns. Pp. 1–49 in: Mineralized Intrusion-related Skarn Systems (Lentz, D.R., editor). MAC Short Course Volume 26.Google Scholar
Brigatti, M.F., Caprilli, E., Mottana, A. and Poppi, L. (2004) Nb-containing titanite: new data and crystal structure refinement. Neues Jahrbuch fur Mineralogie Monatshefte, 3, 117126.CrossRefGoogle Scholar
Castelli, D. and Rubatto, D. (2002) Stability of Al- and F-rich titanite in metacarbonate: petrologic and isotopic constraints from a polymetamorphic eclogi-tic marble of the internal Sesia Zone (Western Alps). Contribution to Mineralogy and Petrology, 142, 627639.CrossRefGoogle Scholar
Cerny, P., Novak, M. and Chapman, R. (1995) The Al(Nb,Ta)Ti_2 substitution in titanite: the emergence of a new species? Mineralogy and Petrology, 52, 6173.CrossRefGoogle Scholar
Chakhmouradian, A.R. (2004) Crystal chemistry and paragenesis of compositionally unique (Al-,Fe-,Nb-, and Zr-rich) titanite from Afrikanda, Russia. American Mineralogist, 89, 17521762.CrossRefGoogle Scholar
Clark, A.M. (1974) A tantalum-rich variety of sphene. Mineralogical Magazine, 39, 605607.CrossRefGoogle Scholar
Ellemann-Olesen, R. and Malcherek, T. (2005) Temperature and composition dependence of structural phase transitions in Ca(TixZr!_x)OGeO4 . American Mineralogist, 90, 687694.CrossRefGoogle Scholar
Enami, M., Suzuki, K., Liou, J.G. and Bird, D.K. (1993) Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence. European Journal of Mineralogy, 5, 219231.CrossRefGoogle Scholar
Franz, G. and Spear, F.S. (1985) Aluminous titanite (sphene) from the eclogite zone, South Central Tauern Window, Austria. Chemical Geology, 50, 3346.CrossRefGoogle Scholar
Geisler, T., Berndt, J., Meyer, H.-W., Pollok, K. and Putnis, A. (2004) Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between nature and experiment. Mineralogical Magazine, 68, 905922.CrossRefGoogle Scholar
Geisler, T., Poml, P., Stephan, T., Janssen, A. and Putnis, A. (2005) Experimental observation of an interface-controlled pseudomorphic replacement reaction in a natural crystalline pyrochlore. American Mineralogist, 90, 16831687.CrossRefGoogle Scholar
Geisler, T., Schaltegger, U. and Tomaschek, F. (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements, 3, 4350.CrossRefGoogle Scholar
Groat, L.A., Carter, R.T. and Hawthorne, F.C. (1985) Tantalian niobian titanite from the Irgon claim, southeastern Manitoba. The Canadian Mineralogist, 23, 569571.Google Scholar
Groat, L.A., Kek, S., Bismayer, U., Schmidt, C, Krane, H.G., Meyer, H., Nistor, L. and van Tendeloo, G. (1996) A synchrotron radiation, HRTEM, X-ray powder diffraction, and Raman spectroscopic study of malayaite, CaSnSiO5 . American Mineralogist, 81, 595602.CrossRefGoogle Scholar
Gustafson, W.L. (1974) The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-Si-O-H. Journal of Petrology, 15, 455496.CrossRefGoogle Scholar
Hansen, E.C. and Harlov, D.E. (2007) Whole rock, phosphate, and silicate compositions across an amphibolite- to granulite-facies transition, Tamil Nadu, India. Journal of Petrology, 48, 16411680.CrossRefGoogle Scholar
Harlov, D.E. and Forster, H-J. (2002) High grade fluid metasomatism on both a local and regional scale: the Seward Peninsula, Alaska and the Ivrea-Verbano Zone, northern Italy. Part II: phosphate mineral chemistry. Journal of Petrology, 43, 801824.CrossRefGoogle Scholar
Harlov, D.E., Wirth, R. and Forster, H-J. (2005) An experimental study of dissolution—reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150, 268286.CrossRefGoogle Scholar
Harlov, D.E., Tropper, P., Seifert, W., Nijland, T. and Forster, HJ. (2006) Formation of Al-rich titanite (CaTiSiO4O-CaAlSiO4OH) reaction rims on ilme-nite in metamorphic rocks as a function of/H2O and fO2. Lithos, 88, 7282.Google Scholar
Harlov, D.E., Wirth, R. and Hetherington, C.J. (2007) The relative stability of monazite and huttonite at 300—900. and 200—1000.MPa: metasomatism and the propagation of metastable mineral phases. American Mineralogist, 92, 16521664.CrossRefGoogle Scholar
Hetherington, C.J. and Harlov, D.E. (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry. American Mineralogist, 93, 806820.CrossRefGoogle Scholar
Higgins, J.B. and Ribbe, P.H. (1976) The crystal chemistry and space groups of natural and synthetic titanites. American Mineralogist, 61, 878888.Google Scholar
Hollabaugh, C.L. and Rosenberg, P.E. (1983) Substitution of Ti for Si in titanite and new end-member cell dimensions for titanite. American Mineralogist, 68, 177180.Google Scholar
Houzar, S. and Novak, M. (2006) Clintonite-bearing assemblage in chondrodite marbles from the Moldanubian Zone, western Moravia, Bohemian Massif. Journal of the Czech Geological Society, 51, 249258.Google Scholar
Houzar, S., Litochleb, J., Sejkora, J., Cempirek, J. and Cicha, J. (2008) Unusual mineralization with niobian titanite and Bi-tellurides in scheelite skarn from Kamenne doly quarry near Pisek, Moldanubian Zone, Bohemian Massif. Journal of Geoscience, 53, 116.Google Scholar
Hughes, J.M., Bloodaxe, E.S., Hanchar, J. M. and Foord, E.E. (1997) Incorporation of rare earth elements in titanite: Stabilization of the A2/a dimorph by creation of antiphase boundaries. American Mineralogist, 82, 512516.CrossRefGoogle Scholar
Janeczek, J. (1996) Nb-, Ta- and Sn-rich titanite and its alteration in pegmatites from Zolkiewka, Poland. Neues Jahrbuch fur Mineralogie Monatshefte, 10, 459469.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Kunz, M., Xirouchakis, D., Wang, Y., Parise, J.B. and Lindsley, D.H. (1997) Structural investigations along the join CaTiOSiO4-CaSnOSiO4 . Schweizerische Mineralogische Petrographische Mitteilungen, 77, 111.Google Scholar
Liferovich, R.P. and Mitchell, R.H. (2005) Composition and paragenesis of Na-, Nb- and Zr-bearing titanite from Khibina, Russia and crystal-structure data for synthetic analogues. The Canadian Mineralogist, 43, 795812.CrossRefGoogle Scholar
Liferovich, R.P. and Mitchell, R.H. (2006a) Solid solutions of niobium in synthetic titanite. The Canadian Mineralogist, 44, 10891097.CrossRefGoogle Scholar
Liferovich, R.P. and Mitchell, R.H. (20066) Tantalum-bearing titanite: synthesis and crystal structure data. Physics and Chemistry of Minerals, 33, 7383.CrossRefGoogle Scholar
Markl, G. and Piazolo, S. (1999) Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and host-rock composition. American Mineralogist, 84, 3747.CrossRefGoogle Scholar
Meinert, L.D. (1992) Skarns and skarn deposits. Geoscience Canada, 19, 145162.Google Scholar
Novak, M., Cerny, P., Cempirek, J., Srein, V. and Filip, J. (2004) Ferrotapiolite as a pseudomorph of stibiotantalite from the Lastovicky lepidolite pegmatite, Czech Republic; an example of hydrothermal alteration at constant Ta/(Ta+Nb). The Canadian Mineralogist, 42, 11171128.CrossRefGoogle Scholar
Oberti, R., Smith, D.C., Rossi, G. and Caucia, F. (1991) The crystal-chemistry of high-aluminium titanites. European Journal of Mineralogy, 3, 777792.CrossRefGoogle Scholar
Paul, B.J., Cerny, P., Chapman, R. and Hinthorne, RJ. (1981) Niobian titanite from the Huron Claim pegmatite, southeastern Manitoba. The Canadian Mineralogist, 19, 549552.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ procedure for improved quantitative microanalysis. Microbeam Analysis, 20, 104105.Google Scholar
Prowatke, S. and Klemme, S. (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Ada, 69, 695709.CrossRefGoogle Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Rubatto, D., Miintener, O., Barnhoorn, A. and Gregory, C. (2008) Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). American Mineralogist, 93, 15191529.CrossRefGoogle Scholar
Russell, J.K., Groat, L.A. and Halleran, A.A. (1994) LREE-vich niobian titanite from Mount Bisson, British Columbia: Chemistry and exchange mechanisms. The Canadian Mineralogist, 32, 575587.Google Scholar
Sengupta, P., Raith, M.M. and Datta, A. (2004) Stability of fluorite and titanite in a calc-silicate rock from the Vizianagaram area, Eastern Ghats Belt, India. Journal of Metamorphic Geology, 22, 345359.CrossRefGoogle Scholar
Szeleg, E. (2003) The crystal chemistry of tin in titanite. Mineralogical Society of Poland — Special papers, 22, 218220.Google Scholar
Taylor, M. and Brown, G.E. (1976) High-temperature structural study of the Pl-yla «-» Alia phase transition in synthetic titanite, CaTiSiO5 . American Mineralogist, 61, 435447.Google Scholar
Tiepolo, M., Oberti, R. and Vannucci, R. (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191, 105119.CrossRefGoogle Scholar
Troitzsch, U., Ellis, D.J., Thompson, J. and Fitz-Gerald, J. (1999) Crystal structural changes in titanite along the join TiO-AlF. European Journal of Mineralogy, 11, 955965.CrossRefGoogle Scholar
Uher, P., Cerny, P., Chapman, R., Hatar, J. and Miko, O. (1998) Evolution of Nb,Ta-oxide minerals in the Prasiva granitic pegmatites, Slovakia. II. External hydrothermal Pb,Sb overprint. The Canadian Mineralogist, 36, 535545.Google Scholar
Woolley, A.R., Platt, R.G. and Eby, N. (1992) Niobian titanite and eudialite from Ilomba nepheline syenite complex, north Malawi. Mineralogical Magazine, 56, 428430.CrossRefGoogle Scholar
Zharikov, V.A. (1970) Skarns. International Geology Review, 12, 541559. 619647. 760775.CrossRefGoogle Scholar

A correction has been issued for this article: