Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T04:08:01.416Z Has data issue: false hasContentIssue false

Compositions and formation conditions of fluid inclusions in emerald from the Maria deposit (Mozambique)

Published online by Cambridge University Press:  05 July 2018

Ye. Vapnik*
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
I. Moroz
Affiliation:
The Institute of Earth Sciences, The Hebrew University of Jerusalem, Giv’at Ram, Jerusalem 91904, Israel

Abstract

The compositions of fluid inclusions hosted in emerald and quartz (the Maria deposit, Mozambique) were studied using microthermometric and Raman microprobe techniques. The fluid inclusions in the emerald contain fluids within the Na-Ca-Mg-(HCO3)-(CO3)2−-Cl-H2O system saturated in carbonic acid brines. Nahcolite is a main daughter solid phase within the fluid inclusions. The mean nahcolite and NaCl contents are 25 and 5 wt.%, respectively. Mg-calcite, magnesite, calcite and aragonite are also identified as daughter phases in the fluid inclusions. Many fluid inclusions show necked-down appearance. Groups of nahcolite crystals often make up ∼50 vol.% of necked-down inclusions. It seems that zones of fluid inclusions with numerous birefringent solid phases are distinctive of the Maria emerald deposit. The likely conditions of emerald growth are 400 < T < 500°C and 3 < P < 4 kbar.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, S., Armstrong, B. and de Reuck, K.M. (1976) International Thermodynamic Tables of Fluid state, Carbon dioxide, 3. Pergamon Press, Oxford, UK, 385 pp.Google Scholar
Angus, S., Armstrong, B. and de Reuck, K.M. (1979) International Thermodynamic Tables of Fluid state, Nitrogen, 6. Pergamon Press, Oxford, UK, 241 pp.Google Scholar
Aspden, J.A. (1980) The mineralogy of primary inclusions in apatite crystals extracted from Alnö ijolite. Lithos, 13, 263268.CrossRefGoogle Scholar
Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. Pp. 117130 in: Fluid Inclusions in Mineral. (De Vivo, B. and Frezzotti, M.L., editors). Virginia Tech., Virginia, USA.Google Scholar
Borisenko, A.S. (1982) Analysis of the salt composition of gas-liquid inclusions with the help of criometrical method. Pp. 3746 in: Application of Thermobarogeochemical Methods for Prospecting and Study of Ore Deposits. Nedra, Moscow, Russia (in Russian).Google Scholar
Brown, P.E. and Lamb, W.M. (1989) P-V-T properties of fluids in the system H2O ± CO2 ± NaCl. New graphical presentations and implications for fluid inclusion studies. Geochimica et Cosmochimica Acta, 53, 12091221.CrossRefGoogle Scholar
Bühn, B. and Rankin, A.H. (1999) Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions. Geochimica et Cosmochimica Acta, 63, 37813797.CrossRefGoogle Scholar
Bühn, B., Rankin, A.H., Radtke, M., Haller, M. and Knochel, A. (1999) Burbankite, a (Sr, REE, Na, Ca) carbonate in fluid inclusions from carbonatite-derived fluids: identification and characterization using Laser Raman spectroscopy, SEM-EDX, and synchrotron micro-XRF analysis. American Mineralogist, 84, 11171125.CrossRefGoogle Scholar
Burke, E.A.J. (1994) Raman microspectrometry of fluid inclusions: the daily practice. Pp. 2544 in: Fluid Inclusions in Minerals. (De Vivo, B. and Frezzotti, M.L., editors). Virginia Tech., Virginia, USA.Google Scholar
Cheilletz, A. (1998) La géologie des gisements d’emeraude. Pp. 3341 in: L’ emeraude. Connaissances actuelles et prospective. (Giard, D., editor). Association Française de Gemmologie, France.Google Scholar
Cheilletz, A, Féraud, G., Giuliani, G. and Rodriguez, C.T. (1994) Time-pressure and temperature constraints on the formation of Colombian emeralds: An 40Ar/39Ar laser microprobe and fluid inclusion study. Economic Geology, 89, 361380.CrossRefGoogle Scholar
Collins, P.L.F. (1979) Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74, 14351444.CrossRefGoogle Scholar
Correia Neves, J.M. (1978) Estudo de ocorrencias de esmeralda na provincia da Zambezia – Mocambique. Annais do XXX Congresso Brasileiro de Geologia, RECIFE, 3, 11411155.Google Scholar
Correia Neves, J.M., Lopes Nunes, J.E. and Lucas, D.B. (1971) Mineralogy and structure of some pegmatites from Mozambique (P.E.A) – A review. Revista de Ciências Geologicas, horenco Marques, 4, 3542.Google Scholar
Dereppe, J.M., Moreaux, C., Chauvaux, B. and Schwarz, D. (2000) Classification of emeralds by artificial neural networks. Journal of Gemmology, 27, 93105.CrossRefGoogle Scholar
Dernov-Pegarov, V.F. and Malinin, S.D. (1976) Solubility of calcite in high temperature aqueous solutions of alkali carbonates and the problem of formation of carbonatites. Geochemistry International, 5, 113.Google Scholar
Diamond, L.W. (1994) Salinity of multivolatile fluid inclusions determined from clathrate hydrate stability. Geochimica et Cosmochimica Acta, 58, 1941.CrossRefGoogle Scholar
Fuertes-Fuente, M., Martin-Izard, A, Boiron, M.C. and Viñuela, J.M. (2000) P-T path and fluid evolution in the Franqueira granitic pegmatite, Central Galicia, Northwestern Spain. Canadian Mineralogist, 38, 11631175.CrossRefGoogle Scholar
Giuliani, G., Cheilletz, A, Dubessy, J. and Rodriguez, C.T. (1993) Chemical composition of fluid inclusions in Colombian emerald deposits. Proceedings of the Eighth Quadrennial IAGOD Symposium, pp. 159168.Google Scholar
Giuliani, G., Cheilletz, A, Zimmermann, J.-L. Ribeiro-Althoff, A.M., France-Lanord, C. and Féraud, G. (1997) Les gisements d’émeraude du Brésil: genése et typologie. Chronique de la Recherche Miniére, 526, 1761.Google Scholar
Giuliani, G., France-Lanord, C, Coget, P., Schwarz, D., Cheilletz, A, Branquet, Y., Giard, D., Martin-Izard, A., Alexandrov, P. and Piat, D.H. (1998) Oxygen isotope systematics of emerald: relevance of its origin and geological significance. Mineralium Deposita, 31, 513519.CrossRefGoogle Scholar
Grundmann, G. and Morteani, G. (1989) Emerald mineralization during regional metamorphism: Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) deposits. Economic Geology, 84, 18351849.CrossRefGoogle Scholar
Hänni, H.A, Schwarz, D. and Fischer, M. (1987) The emeralds of the Belmont Mine, Minas Gerais, Brazil. Journal of Gemmology, 20, 446456.CrossRefGoogle Scholar
Haynes, F.M. (1985) Determination of fluid inclusion compositions by sequential freezing. Economic Geology, 80, 14361439.CrossRefGoogle Scholar
Kazmi, AH. and Snee, L.W. (1989) Geology of world emerald deposits: a brief review. Pp. 165228 in: Emeralds of Pakistan: Geology, Gemology and Genesi. (Kazmi, A.H. and Snee, L.W., editors). Van Nostrand Reinhold publishers, The Netherlands.CrossRefGoogle Scholar
Keeling, J.L. (1991) Review of anew theory of emerald formation in schist-hosted deposits. Australian Gemmologist, 8, 440442.Google Scholar
Kogan, V.B., Ogorodnikov, S.K. and Kafarov, V.V. (1969) Handbook of Solubility, 2., Nauka, Leningrad, Russia, 1170 pp. (in Russian).Google Scholar
Marshall, D., Groat, L., Giuliani, G., Ercit, S.T., Gault, R.A, Wise, M.A, Wengzynowski, W. and Eaton, W.D. (2001) Low salinity fluid inclusions in Canadian emeralds: The Crown Showing, Southeastern Yukon, Canada. Pp. 279282 in: ECROFIXVI, Abstract. (Noronha, F., Doria, A. and Guedes, A., editors). Porto, Portugal.Google Scholar
Mees, E, Reyes, E. and Keppens, E. (1998) Stable isotope chemistry of gaylussite and nahcolite from the deposits of the crater lake at Malta, northern Sudan. Chemical Geology, 146, 8798.CrossRefGoogle Scholar
Moroz, I.I. and Eliezri, I.Z. (1998) Emerald chemistry from different deposits: an electron microprobe study. Australian Gemmologist, 20, 6469.Google Scholar
Moroz, I.I. and Eliezri, I.Z. (1999) Mineral inclusions in emeralds from different sources. Journal of Gemmology, 26, 357363.CrossRefGoogle Scholar
Moroz, I. and Vapnik, Ye. (1999) Fluid inclusions in emeralds from schist-type deposits. Canadian Gemmologist, XX, 814.Google Scholar
Moroz, I., Vapnik, Ye., Eliezri, I. and Roth, M. (2001) Mineral and fluid inclusion study of emeralds from the Lake Manyara and Sumbawanga deposits (Tanzania). Journal of African Earth Science, 33, (in press).CrossRefGoogle Scholar
New, Y.Y. and Morteani, G. (1993) Fluid evolution in the H2O-CH4-CO2NaCl system during emerald mineralization at Gravelotte, Murchison Greenstone Belt, Northeast Transvaal, South Africa. Geochimica et Cosmochimica Acta, 57, 89103.Google Scholar
Ottaway, T.L., Wicks, F.J., Bryndzia, L.T. Kyser, T.K. and Spooner, E.T.C. (1994) Formation of the Muzo hydrothermal emerald deposit in Colombia. Nature, 369, 552554.CrossRefGoogle Scholar
Rankin, A.H. (1975) Fluid inclusions studies in apatite from carbonatites of the Wasaki area of western Kenya. Lithos, 8, 123136.CrossRefGoogle Scholar
Rankin, A.H. (1977) Fluid-inclusion evidence for the formation conditions of apatite from the Tororo carbonatite complex of eastern Uganda. Mineralogical Magazine, 41, 155164.CrossRefGoogle Scholar
Roedder, E. (editor) (1984) Fluid Inclusions. Reviews in Mineralogy, 12. Mineralogical Society of America, Washington, D.C., 644 pp.CrossRefGoogle Scholar
Schmulovich, K.I., Tereshenko, Ye.N. and Kalinichev, A.G. (1982) Equation of state and isochors of non-polar gases up to 2000 K and 10 GPA. Geochimiya, 11, 15981614.(in Russian).Google Scholar
Schwartz, M.O. (1989) Determining phase volume of mixed CO2-H2O inclusions using microthermometric measurements. Mineralium Deposita, 24, 4347.CrossRefGoogle Scholar
Schwarz, D., Kanis, J. and Kinnaird, J. (1996) Emerald and green beryl from Central Nigeria. Journal of Gemmology, 25, 117141.CrossRefGoogle Scholar
Seal, R.R. II (1989) A reconnaissance study of the fluid inclusion geochemistry of the emerald deposits of Pakistan and Afghanistan. Pp. 152164 in: Emeralds of Pakistan: Geology, Gemology and Genesi. (Kazmi, A.H. and Snee, L.W., editors). Van Nostrand Reinhold publishers, The Netherlands.Google Scholar
Seal, R.R. II, Hammarstrom, J.M., Snee, L.W. and Kazmi, A.H. (1991) Geochemistry of emerald deposits of Pakistan and Afghanistan. Program with Abstracts for a meeting of the Geological Association of Canada, the Mineralogical Association of Canada and the Society of Economic Geologists, Toronto, 16, A113.Google Scholar
Sliwa, A.S. and Nguluwe, C.A. (1984) Geological setting of Zambian emerald deposits. Precambrian Research, 25, 213228.CrossRefGoogle Scholar
Söhnge, A.P.G. (1986) Mineral provinces of southern Africa. Pp. 123 in: Mineral Deposits of Southern Africa, 1 (Anhaeusser, C.R. and Maske, S., editors). The Geological Society of South Africa.Google Scholar
Vapnik, Ye. and Moroz, I. (2001) Fluid inclusions in Panjshir emerald (Afghanistan). Pp. 451454 in: ECROFI XVI, Abstract. (Noronha, F., Doria, A. and Guedes, A., editors). Porto, Portugal.Google Scholar
Vapnik, Ye. and Moroz, I. (2000) Fluid inclusions in emerald from the Jos complex (Central Nigeria). Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 117129.Google Scholar
Vityk, M.O and Bodnar, R.J. (1995) Do fluid inclusions in high grade metamorphic terrains preserve peak metamorphic density during retrograde decompression? American Mineralogist, 80, 641644.Google Scholar
Zwart, E.W. and Touret, J.L.R. (1994) Melting behaviour and composition of aqueous fluid inclusions in fiuorite and calcite: applications within the system H2O-CaCl2-NaCl. European Journal of Mineralogy, 6, 773786.CrossRefGoogle Scholar