Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:51:07.188Z Has data issue: false hasContentIssue false

Correlation between reduciblity and composition of natural wolframite in Argentinian ore deposits

Published online by Cambridge University Press:  05 July 2018

I. L. Botto*
Affiliation:
Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, La Plata (1900), Argentina
V. L. Barone
Affiliation:
Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, La Plata (1900), Argentina
M. A. Sanchez
Affiliation:
CINDECA-CICPBA, La Plata (1900), Argentina
I. B. Schalamuk
Affiliation:
Instituto de Recursos Minerales (INREMI) and Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata (1900), Argentina

Abstract

Thermal reduction in wolframite (composition: Fe1-xMnxWO4 (0.08<x<0.87)) from different deposits in Argentina, was analysed using a temperature-programmed reduction (TPR) technique. X-ray powder diffraction analysis (XRPD), vibrational spectroscopy (IR and Raman), scanning electron microscopy (SEM) and electron microprobe analysis (EDAX) were used to assess the relationship between reactivity degree in a reducing atmosphere (H2 10% – N2 90%) and chemical composition of wolframite.Similar studies were carried out with other related minerals, especially the ones found in natural deposits as alteration or association products. Stability of the solid solution serial members is correlated with redox properties of divalent cations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelelli, V. (1984) Yacimientos metalíferos de la República Argentina. Special publication, CICPBA, VII, 613.Google Scholar
Botto, I.L., Cabello, C.I. and Thomas, H.J. (1992) Thermal behaviour and properties of the (NH4)6[MnMo9O32]8H2O Waugh phase. Thermochim. Acta, 211, 229–40.CrossRefGoogle Scholar
Brodtkorb, M.K., Brodtkorb, A. and Ametrano, S. (1982) Type of W- deposits from province of San Luis (Argentina). Actas III, Congreso Latinoamericano de Geología, pp. 177-85 (in Spanish).Google Scholar
Cabello, C.I., Botto, I.L. and Thomas, H.J. (1994) Reducibility and thermal behaviour of some Anderson phases. Thermochim. Acta, 232, 183–93.CrossRefGoogle Scholar
Chernyshev, L.V., Belykh, L.A. and Pastushova, T.M. (1976) An investigation of solid solutions in the system FeWO4-MnWO4. Geochem. Int., 6070.Google Scholar
Drakshayani, D.N. and Mallya, R.N. (1991) Reactivity with hydrogen of pure iron oxide and of iron oxides doped with oxides of Mn, Co, Ni and Cu. J. Thermal Anal., 37, 891906.CrossRefGoogle Scholar
Drakshayani, D.N. and Mallya, R.N. (1994) Kinetics of low temperature hydrogen reduction of the metastable spinels magnetite and solid solutions with Mn, Co, Ni and Cu. J. Thermal Anal., 42, 937–50.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
Fouad, N.E., Nohman, K.H. and Zaki, M.I. (1994) Thermoanalytical resolution of the hydrogen-influenced reductive events in the decomposition course of ammonium paratungstate. Thermochim. Acta, 239, 137–45.CrossRefGoogle Scholar
Gomez, M.C. and Aliota, S. (1993) Relationship between the San Martin granitic stock and the chemical composition of wolframite. Asoc. Argentina Geol. Econom., 10, 22–8 (in Spanish).Google Scholar
Hsu, L.C. (1976) The stability relation of the wolframite series. Amer. Mineral., 61, 944–55.Google Scholar
Ivanova., G. (1988) Geochemical conditions of formation of various composition wolframites. Bull. Mineral., 111–7.Google Scholar
Jones, A. and McNicol, B. (1986) Temperature-Programmed Reduction of Solid Materials Characterization. Marcel Dekker Inc., New York.Google Scholar
Klissurski, D. and Dimitrova, R. (1990) Reducibility of metal oxides in hydrogen and strength of oxygen bond in their surface layer. Bull. Chem. Soc. Jpn., 63, 590–1.CrossRefGoogle Scholar
Lawrence, L.J. (1961) Crystal habit of wolframite as an indication of relative temperature of formation. Neues Jahrb. Miner. Mh., 241–6.Google Scholar
McDevitt, T. and Baun, W.L. (1964) Infrared absorption study of metal oxides in the low frequency region (700-240 cm-1). Spectrochim. Acta, 20, 799805.CrossRefGoogle Scholar
Muller., O and Roy, R. (1974) The Major Ternary Structural Families. Springer Verlag, New York.CrossRefGoogle Scholar
Nakashima, K., Watanabe, M. and Soeda, A. (1986) Regional and local variations in the composition of the wolframite series from SW Japan and possible factors controlling compositional variations. Mineral. Deposita, 21, 200–6.CrossRefGoogle Scholar
Naumov, V.B. and Ivanova, G.F. (1971) The pressure and temperature conditions for formation of wolframite deposits. Geokhimiya, 6, 627–41.Google Scholar
Sasaki, A. (1959) Variation of unit cell parameters in wolframite series. Mineral. J., 2, 375–96.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–67.CrossRefGoogle Scholar
Sleight, A.W. (1972) Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallogr., A28, 2899–902.CrossRefGoogle Scholar
Southmayd, D.W., Contescu, C. and Schwarz, J.A. (1993) Temperature programmed reduction and oxidation of Ni supported WO3-Al2O3 composite oxides. J. Chem. Soc. Faraday Trans., 89, 2075–83.CrossRefGoogle Scholar
Vassallo, M.B. and Botto, I.L. (1993) Temperature programmed reduction of FeVMoO7 . Thermochim. Acta, 220, 277–82.CrossRefGoogle Scholar
Weast, R.C. (1981) CRC Handbook of Chemistry and Physics. CRC Press Inc., Boca Raton, USA.Google Scholar
Werner, P.E. (1969) Program for least squares refinement of crystal structure cell dimensions. Ark. Kemi., 31, 513–6.Google Scholar
Willgallis, A. (1982) Zum Mischkristallverhaltnis von Wolframiten. Neues Jahrb. Miner. Abh,. 145, 308–26.Google Scholar
Wolf, D. and Wendt, G. (1991) Temperature programmed reduction studies on phase reconstruction of Na2O-MnOx catalysts. React. Kinet. Catal. Lett., 45, 221–6.CrossRefGoogle Scholar