Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T17:42:20.410Z Has data issue: false hasContentIssue false

The crystal chemistry of the uranyl carbonate mineral grimselite, (K, Na)3Na[(UO2)(CO3)3](H2O), from Jáchymov, Czech Republic

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, 182 21, Czech Republic Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
K. Fejfarová
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, 182 21, Czech Republic
R. Skála
Affiliation:
Institute of Geology ASCR, v.v.i., Rozvojová 269, Praha 6, 16500, Czech Republic
R. Škoda
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
N. Meisser
Affiliation:
Musée cantonal de géologie and Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, Université de Lausanne, Anthropole, Lausanne-Dorigny, CH-1015, Switzerland
J. Hlousek
Affiliation:
U Roháčových kasáren 24, 100 00, Praha 10, Czech Republic
I. Císařová
Affiliation:
Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 6, Praha 2, 128 43, Czech Republic
M. Dušek
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, 182 21, Czech Republic
F. Veselovský
Affiliation:
Czech Geological Survey, Klárov 3, 118 21, Praha 1, Czech Republic
J. Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Václavské náměstí 68, Praha 1, 115 79, Czech Republic
J. Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Václavské náměstí 68, Praha 1, 115 79, Czech Republic
P. Ondruš
Affiliation:
Biskupský dvů r 2, Praha 1, 11000, Czech Republic
*

Abstract

Two crystals of the uranyl carbonate mineral grimselite, ideally K3Na[(UO2)(CO3)3](H2O), from Jáchymov in the Czech Republic were studied by single-crystal X-ray diffraction and electron-probe microanalysis. One crystal has considerably more Na than the ideal chemical composition due to substitution of Na into KO8 polyhedra; the composition of the other crystal is nearer to ideal, and similar to synthetic grimselite. The presence of Na atoms in KO8 polyhedra, which are located in channels in the crystal structure, reduces their volume, and as a result the unit-cell volume also decreases. Structure refinement shows that the formula for the sample with the anomalously high Na content is (K2.43Na0.57)Σ3.00Na[(UO2)(CO3)3](H2O). The unit-cell parameters, refined in space group P2c, are a = 9.2507(1), c = 8.1788(1) Å, V = 606.14(3) Å3 and Z = 2. The crystal structure was refined to R1 = 0.0082 and wR1 = 0.0185 with a GOF = 1.33, based on 626 observed diffraction peaks [Iobs>3σ(I)].

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Act Crystallographica, B41, 244248.CrossRefGoogle Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bondstrength bond-length curves for oxides. Act Crystallographica, A29, 266282.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadia. Mineralogist, 35, 15511570.Google Scholar
Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted crystals. Act Crystallographica, A51, 887897.CrossRefGoogle Scholar
Coppens, P. (1970) The evaluation of absorption and extinction in single crystal structure analysis. Pp. ,255270 in: Crystallographic Computing (F.R. Ahmed, S.R. Hall, and C.P. Huber, editors). Munksgaard, Copenhagen..Google Scholar
Finch, RJ. (1997) Thermodynamic stabilities of U(VI) minerals: estimated and observed relationships. Material Research Society Symposiu. Proceedings, 465, 11851192.Google Scholar
Finch, R.J. and Ewing, R.C. (1992) The corrosion of uraninite under oxidizing conditions. Journal of Nuclea. Materials, 190, 133156.Google Scholar
Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91 — 179 in: Uranium: Mineralogy, Geochemistry and the Environment (P.C Burns and R Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.Google Scholar
Flack, H.D. (1983) On enantiomorph-polarity estimation. Act Crystallographica, A39, 876881.CrossRefGoogle Scholar
Garrels, R.M. and Christ, C.L. (1959) Behavior of Uranium Minerals During Oxidation. Pp. ,8189 in: Geochemistry and Mineralogy of the Colorado Plateau Uranium Ores (R.M. Garrels and E.S. Larsen, editors). US Geological Survey Professional Paper, 320. US Geological Survey, Reston, Virginia, USA, 236 pp.CrossRefGoogle Scholar
Gorman-Lewis, D., Burns, P.C. and Fein, J.B. (2008) Review of uranyl mineral solubility measurements. Journal o. Chemical Thermodynamics, 40, 335352.CrossRefGoogle Scholar
Hoppe, R. (1979) Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift fur Kristallographie, 150, 2352.CrossRefGoogle Scholar
Kubatko, K.-A.H. and Burns, P.C. (2004) The Rb analogue of grimselite, Rb6Na2[(UO2)(CO3)3]2 (H2O). Acta Crystallographica, C60, i25—i26.Google Scholar
Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore. Geochimica et Cosmochimica. Acta, 42, 547569.CrossRefGoogle Scholar
Li, Y. and Burns, P.C. (2001) The crystal structure of synthetic grimselite, K3Na[(UO2)(CO3)3](H2O). The Canadia. Mineralogist, 39, 11471151.CrossRefGoogle Scholar
Mazzi, F. and Rinaldi, F. (1960) Structural studies on Me0_4Me2_0UO2(CO3)3·nH2O compounds. I. The crystal structure of K3NaUO2(CO3)3. Acta Crystallographica, 13, 1139.Google Scholar
Mazzi, F. and Rinaldi, F. (1961) La struttura cristallina del K3Na(UO2)(CO3)3. Periodico d. Mineralogia, 30, 121.Google Scholar
Paulis, P., Kopecky, S. and Cerny, P. (2007) Uranium Minerals of the Czech Republic and their Localities. Martin Bartos, Kuttna, Czech Repubic, 132 pp., [in Czech]..Google Scholar
Petríček, V., Dusek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) "PAP" (tp pZ) procedure for improved quantitative microanalysis. Pp. 104 — 106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, USA..Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Act Crystallographica, A32, 751767 CrossRefGoogle Scholar
Tvrdy, J. and Plašil, J. (2010) Jachymov — Reiche Erzlagerstatte und Radonbad im bohmischen Westerzgebirge. Aufschluss, 61, 277292.Google Scholar
Walenta, K. (1972) Grimselit, ein neues Kalium- Natrium-Uranylkarbonat aus dem Grimselgebiet (Oberhasli, Kt. Bern, Schweiz). Schweizerische Mineralogishe und Petrographisch. Mitteilungen, 52, 93108 Google Scholar
Walenta, K. (1976) Baylissit, ein neues Karbonatmineral aus den Schweizer Alpen. Schweizerische Mineralogische und Petrographisch. Mitteilungen, 56, 187194.Google Scholar
Walenta, K. (1995) Grimselit von Menzenschwand. Erzgraber, 9, 8991.Google Scholar