Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T21:00:26.079Z Has data issue: false hasContentIssue false

The crystal structure of Ga-rich plumbogummite from Tsumeb, Namibia

Published online by Cambridge University Press:  05 July 2018

S. J. Mills*
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
A. R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
M. Raudsepp
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
A. G. Christy
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia
*

Abstract

Ga-rich plumbogummite, (Pb0.87,Ca0.131.00H(Al1.95,Ga1.05)Σ3.00(PO4)2(OH)6, from Tsumeb, Namibia, has rhombohedral symmetry, space group Rm, with the cell parameters a = 7.0752(19) Å, c = 16.818(4) Å and V = 729.1(3) Å3. The crystal structure has been refined to R1 = 2.05%. Ga-rich plumbogummite has an alunite-type structure comprised of a rhombohedral stacking of (001) composite layers of corner-shared (Al,Ga)O6 octahedra and PO4 tetrahedra, with Pb atoms occupying icosahedrally coordinated sites between the layers. The Pb and H positions are discussed. Ga-rich plumbogummite is nonpleochroic, uniaxial (+), with indices of refraction, ε = 1.742(3) and ω = 1.722(3), determined in white light. The five strongest powder-diffraction lines [d in Å, (I/I°), (hkl)] are: 2.995, (100), (113); 5.766, (95), (101); 2.236, (43), (107, 122); 3.539, (38), (110); 1.919 (32), (303, 033).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2000) Handbook of Mineralogy, Volume IV, Arsenates, Phosphates, Vanadates. Mineral Publishing, Tucson, Arizona, USA.Google Scholar
Bajnoczi, B., Seres-Hartai, E. and Nagy, G. (2004) Phosphate-bearing minerals in the advanced argillic zones of high-sulphidation type ore deposits in the Carpatho-Pannonain region. Acta Mineralogica Petrographica, 45, 81—92.Google Scholar
Birch, W.D., Pring, A. and Gatehouse, B.M. (1992) Segnitite, PbFe3H(AsO4)2(OH)6, a new mineral in the lusingite group, from Broken Hill, New South Wales. American Mineralogist, 77, 656—659.Google Scholar
Blount, A.M. (1974) The crystal structure of crandallite. American Mineralogist, 59, 41—47.Google Scholar
Brese, N. and O’Keeffe, M. (1991) Bond valence parameters for solids. Acta Crystallographica B, 47, 192—197.Google Scholar
Bruker (2005) SAINT, SADABS AND SHELXTL. Bruker AXS Inc. Madison, Wisconsin, USAGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1994) The crystal structure of wherryite, Pb7Cu2(SO4)4(SiO4)2(OH)2, a mixed sulphate-silicate with [[6]M(TO4)2O] chains. The Canadian Mineralogist, 32, 373—380.Google Scholar
Ferraris, G. and Ivaldi, G. (1984) X—OH and O—H_O bond lengths in protonated oxoanions. Acta Crystallographica B, 40, 1 —6.Google Scholar
Gebhard, G. (1999) Tsumeb II. A Unique Mineral Locality. GG Publishing, Grossenseifen, Germany, 328 pp.Google Scholar
Giraud, S., Wignacourt, J-P., Drache, M., Nowogrocki, G. and Steinfink, H. (1999) The stereochemical effect of 6s2 lone-pair electrons: The crystal structure of a new lead bismuth oxyphosphate Pb4BiO4PO4 . Journal of Solid State Chemistry, 142, 180—88.CrossRefGoogle Scholar
Giusepetti, G. and Tadini, C. (1980) The crystal structure of osarizawaite. Neues Jahrbuch für Mineralogie Monatshefte, 401—407.Google Scholar
Giusepetti, G. and Tadini, C. (1987) Corkite PbFe3(SO4)(PO4)(OH)6, its crystal structure and ordered arrangement of tetrahedral cations. Neues Jahrbuch für Mineralogie Monatshefte, 71—81.Google Scholar
Grey, I.E., Birch, W.D., Bougerol, C. and Mills, S.J. (2006) Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals. Journal ofSolid State Chemistry, 179, 3834—3843.Google Scholar
Grey, I.E., Mumme, W.G., Bordet, P. and Mills, S.J. (2008) A new crystal-chemical variation of the alunite-type structure in monoclinic PbZn0.5Fe3 (AsO4)2(OH)6, The Canadian Mineralogist, 46, 13551364.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G., Mills, S.J., Birch, W.D. and Wilson. N.C. (2009) The crystal chemical role of zinc in alunite-type minerals: structure refinements for pure and zincian kintoreite, American Mineralogist, 94, 676—683.CrossRefGoogle Scholar
Hintze, C. (1933) Handbuch der Mineralogie. Vol. 1-4, Part 2, Walter de Gruyter and Co., Berlin. 1153 — 1159.Google Scholar
Huminicki, D.M. and Hawthorne, F.C. (2002) The Crystal Chemistry of the Phosphate Minerals. Pp. 123—253 in: Phosphates — Geochemical, Geobiological, and Materials Importance (M.J. Kohn, J. Rakovan and J.M. Hughes, editors). Reviews in Mineralogy and Geochemistry, 48, Mineralogal Society of America, Chantilly, Virginia, USA.Google Scholar
Jambor, J.L. (1999) Nomenclature of the alunite supergroup. The Canadian Mineralogist, 37, 13231341.Google Scholar
Jambor, J.L., Owens, D.R., Grice, J.D. and Feinglos, M.D. (1996) Gallobeudantite, PbGa3[(AsO4), (SO4)]2(OH)6, a new mineral species from Tsumeb, Namibia, and associated new gallium analogues of the alunite—jarosite family. The Canadian Mineralogist, 34, 13051315.Google Scholar
Kharisun Taylor, M.R., Bevan, D.J. and Pring, A. (1997a) The crystal structure of kintoreite, PbFe3(PO4)2(OH,H2O)6 . Mineralogical Magazine, 61, 123129.CrossRefGoogle Scholar
Kharisun Taylor, M.R., Bevan, D.J., Rae, A.D. and Pring, A. (1997b) The crystal structure of mawbyite, PbFe2(AsO4)2(OH)2. Mineralogical Magazine, 61, 685—691.Google Scholar
Kolitsch, U., Bernhart, H.-J., Krause, W. and Blass, G. (2008) Pattersonite, PbFe3(PO4)2(OH)4 [(H2O)0.5(OH)0.5]2, a new supergene phosphate mineral: description and crystal structure. European Journal of Mineralogy, 20, 281—288.CrossRefGoogle Scholar
Kolitsch, U., Tiekink, E.R., Slade, P.G., Taylor, M.R. and Pring, A. (1999 a) Hinsdalite and plumbogum- mite, their atomic arrangements and disordered lead sites. European Journal of Mineralogy, 11, 513—520.CrossRefGoogle Scholar
Kolitsch, U., Slade, P.G., Tiekink, E.R.T. and Pring, A. (1999b) The structure of antimonian dussertite and the role of antimony in oxysalt minerals. Mineralogical Magazine, 63, 17—26.CrossRefGoogle Scholar
Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitschrift für Kristallographie, 216, 245—247.Google Scholar
Laugier, J. and Bochu, B. (2004) Chekcell: Graphical powder indexing cell and space group assignment software, http://www.ccp14.ac.uk/tutorial/lmgp/Google Scholar
Libowitzky, E. and Beran, A. (2004) IR spectroscopic characterisation of hydrous species in minerals. Pp. 227— 279 in: Spectroscopic Methods in Mineralogy (A. Beran and E. Libowitzky, editors). EMU Notes in Mineralogy, 6. Eotvos University Press, Budapest.Google Scholar
Mills, S.J. (2007) The crystal chemistry and geochronology of minerals from Broken Hill. PhD Thesis, University of Melbourne, Australia, 249 pp.Google Scholar
Mills, S.J., Grey, I.E., Mumme, W.G., Miyawaki, R., Matsubara, S., Bordet, P., Birch, W.D. and Raudsepp, M. (2008) Kolitschite, a new arsenate mineral from Broken Hill, New South Wales, Australia. Australian Journal of Mineralogy, 14, 15—19.Google Scholar
Moore, P.B. (1988) The joesmithite enigma: Note on the 6s2 Pb2+ lone pair. American Mineralogist, 73, 843—844.Google Scholar
Nakamoto, K., Margoshes, M. and Rundle, R.E. (1955) Stretching frequencies as a function of distances in hydrogen bonds. Journal of the American Chemical Society, 77, 6480—6486.CrossRefGoogle Scholar
Scott, K.M. (1987) Solid solution in, and classification of, gossan-derived members of the alunite—jarosite family, northwest Queensland, Australia. American Mineralogist, 72, 178—187.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112—122.Google Scholar
Slansky, E. (1977) Plumbogummite from Ivanhoe Mine, Northern Territory, Australia. Neues Jahrbuch für Mineralogie Monatshefte, 45—53.Google Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A System of Codification for Unnamed Minerals: Report of the Subcommittee for Unnamed Minerals of the IMA Classification. The Canadian Mineralogist, 45, Commission on New Minerals, Nomenclature and 983—1055.Google Scholar