Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:26:21.741Z Has data issue: false hasContentIssue false

The crystal structure of kogarkoite, Na3SO4F

Published online by Cambridge University Press:  05 July 2018

L. Fanfani
Affiliation:
Istituto di Mineralogia, Università di Cagliari, Italy
G. Giuseppetti
Affiliation:
Istituto di Mineralogia, Università di Pavia, Italy
C. Tadini
Affiliation:
Istituto di Mineralogia, Università di Pavia, Italy
P. F. Zanazzi
Affiliation:
Istituto di Mineralogia, Università di Perugia, Italy

Summary

The crystal structure of synthetic kogarkoite has been determined from X-ray data collected on an automatic diffractometer. The refinement was performed by a least-squares method employing anisotropic thermal parameters. The 3157 reflections with I > 3σ(I) converged to a conventional R value of 0.033. The cell content is 12 Na3SO4F, the space-group P21/m, a = 18.074, b = 6.958, c = 11.443 Å, β = 107.71°.

Kogarkoite presents a marked trigonal subcell with c′ corresponding to [102] of the monoclinic cell. The tridimensional framework can be considered built up by nine differently stacked layers of Na atoms approximately perpendicular to the c′ axis (five sheets are present in galeite, six in sulphohalite, and seven in schairerite). The very close structural relationships between these minerals are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busing, (W. R.), Martin, (K. O.), and Levy, (H. A.), 1962. Oak Ridge National Laboratory Report ORNL-TM-305, Oak Ridge, Tennessee.Google Scholar
Cromer, (D. T.) and Waber, (J. T.), 197. International Tables for X-ray Crystallography, IV, 71.Google Scholar
Davies, (J. E.) and Gatehouse, (B. M.), 197. Acta Cryst. B29, 1934Google Scholar
De Marignac, (Ch.), 185. Ann. des Mines, 15, 221.Google Scholar
Fanfani, (L.), Nunzi, (A.), Zanazzi, (P. F.), Zanzari, (A. R.), and Sabdli, (C.), 1975a. Mineral. Mag. 40, 131.CrossRefGoogle Scholar
Fanfani, (L.), Nunzi, (A.), Zanazzi, (P. F.), Zanzari, (A. R.) 1975b. Ibid., 40, 357.Google Scholar
Ferguson, (R. B.), 1974. Acta Cryst. B30, 2527.CrossRefGoogle Scholar
Foote, (H. W.) and Schairer, (J. F.), 1930. J. Am. Chem. Soc. 52, 4202.CrossRefGoogle Scholar
Katie, (I. L.), Dragonette, (K. S.), and Brenner, (S. A.), 1965. Acta Cryst. 19, 713.Google Scholar
Kogarko, (L. N.), 1961. Dokl. Akad. Nauk SSSR, 139, 435.Google Scholar
Pabst, (A.), 1934. Z. Krist. 89, 514.Google Scholar
Pabst, (A.) Sawyer, (D. L.), and Switzer, (G.), 1963. Am. Mineral.. 48, 485.Google Scholar
Pabst, (A.) and Sharp, (W. N.), 1973. Am. Mineral. 58, 116.Google Scholar
Sakamoto, (Y.), 1968. J. Set Hiroshima Univ. Set. A-11 32, 101.Google Scholar
Sharp, (W. N.), 1970. U.S. Geol. Surv. Prof. Pap. 700-B, B-14.Google Scholar
Takeuchi, (Y.), 1972. Z. Krist. 135, 120.CrossRefGoogle Scholar
Watanabe, (T.), 1934. Proc. Imperial Acad. (Japan), 10, 575.CrossRefGoogle Scholar
Wolters, (A.), 1910. Neues Jahrb. Mineral. Beil. Bd. 30, 55.Google Scholar