Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T06:46:09.308Z Has data issue: false hasContentIssue false

Cuatrocapaite-(NH4) and cuatrocapaite-(K), two new minerals from the Torrecillas mine, Iquique Province, Chile, related to lucabindiite and gajardoite

Published online by Cambridge University Press:  22 April 2019

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432Russia
Gerhard Möhn
Affiliation:
Dr.-J.-Wittemannstrasse 5, 65527 Niedernhausen, Germany
Maurizio Dini
Affiliation:
Pasaje San Agustin 4045, La Serena, Chile
Arturo A. Molina Donoso
Affiliation:
Los Algarrobos 2986, Iquique, Chile
Henrik Friis
Affiliation:
Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318, Oslo, Norway
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new minerals cuatrocapaite-(NH4) (IMA2018-083) and cuatrocapaite-(K) (IMA2018-084) are the NH4- and K-dominant members of a series with the general formula (NH4,K)3(NaMg□)(As2O3)6Cl6·16H2O. Both minerals were found at the Torrecillas mine, Iquique Province, Chile, where they occur as secondary alteration phases. Both minerals occur as hexagonal tablets up to ~0.3 mm in diameter. They are transparent, with a vitreous lustre and white streak. For both, the Mohs hardness is ca. 2½, the crystals are somewhat flexible, but not elastic, the fracture is irregular and the cleavage is perfect on {001}. The measured densities are 2.65(2) and 2.76(2) g/cm3 for the NH4- and K-dominant species, respectively. Optically, cuatrocapaite-(NH4) is uniaxial (–) with ω = 1.779(3) and ε = 1.541(3) and cuatrocapaite-(K) is uniaxial (–) with ω = 1.777(3) and ε = 1.539(3) (white light). The minerals are insoluble in acids, but decompose in NaOH(aq). The empirical formulas, determined from electron-microprobe analyses, are (NH4)2.48Na1.66Mg0.87K0.09(As12O18.05)Cl5.88·16.02H2O and K2.68Na1.33Mg0.93(NH4)0.31(As12O18.01)Cl6.16·16.04H2O. The minerals are trigonal, space group R${\bar 3}$m; the cuatrocapaite-(NH4) cell parameters are a = 5.25321(19), c = 46.6882(19) Å, V = 1115.80(9) Å3 and Z = 1; the cuatrocapaite-(K) cell parameters are a = 5.2637(15), c = 46.228(8) Å, V = 1109.2(7) Å3 and Z = 1. The structures, refined for cuatrocapaite-(NH4) to R1 = 1.78% for 544 Io > 2σI reflections, contain four types of layers: (1) a planar neutral As2O3 (arsenite) sheet; (2) an (${\rm NH}_{\rm 4}^{\vskip -2pt\rm \scale65% +} $,K+) layer that links adjacent arsenite sheets; (3) a Cl layer placed on the As side of each arsenite; and (4) a layer containing partially occupied Na, Mg and H2O sites that is flanked on either side by Cl layers. The layer sequence for the type 1, 2 and 3 layers is identical to the Cl–As2O3–K–As2O3–Cl layer sequence in the structures of lucabindiite and gajardoite.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended library. Springer-Verlag GmbH, Dordrecht-Heidelberg-New York-London, 1716 pp.Google Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer, Cham-Heidelberg-Dordrecht-New York-London, 1109 pp.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Garavelli, A., Mitolo, D., Pinto, D. and Vurro, F. (2013) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. American Mineralogist, 98, 470477.Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R., and González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.Google Scholar
Gutiérrez, H. (1975) Informe sobre una rápida visita a la mina de arsénico nativo, Torrecillas. Instituto de Investigaciones Geológicas, Iquique, Chile.Google Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A., Dini, M. and Molina Donoso, A.A. (2013) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite Mineralogical Magazine, 77, 30473054.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2016) Gajardoite, KCa0.5${\rm As}_{\rm 4}^{3 +} $O6Cl2·5H2O, a new mineral related to lucabindiite and torrecillasite from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 12651272.Google Scholar
Kampf, A.R., Chukanov, N.V., Möhn, G., Dini, M., Molina Donoso, A.A. and Friis, H. (2018 a) Cuatrocapaite-(NH4), IMA 2018-083. CNMNC Newsletter No. 46, December 2018, page 1371; Mineralogical Magazine, 82, 13691379.Google Scholar
Kampf, A.R., Chukanov, N.V., Möhn, G., Dini, M., Molina Donoso, A.A. and Friis, H. (2018 b) Cuatrocapaite-(K), IMA 2018-084. CNMNC Newsletter No. 46, December 2018, page 1372; Mineralogical Magazine, 82, 13691379.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2019) Camanchacaite, chinchorroite, espadaite, magnesiofluckite, picaite and ríosecoite: six new hydrogen-arsenate minerals from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 83, 655671.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Mortimer, C., Saric, N. and Cáceres, R. (1971) Apuntes Sobre Algunas Minas de la Región Costera de la Provincia de Tarapacá. Instituto de Investigaciones Geológicas, Santiago de Chile, Chile.Google Scholar
Oliveros, V., Morata, D., Aguirre, L., Féraud, G. and Fornari, M. (2007) Jurassic to Early Cretaceous subduction-related magmatism in the Coastal Cordillera of northern Chile (18°30′–24° S): geochemistry and petrogenesis. Revista Geológica de Chile, 34, 209232.Google Scholar
Pimentel, F. (1978) Proyecto Arsenico Torrecillas. Instituto de Investigaciones Geológicas, Iquique, Chile.Google Scholar
Rech, J.A., Quade, J. and Hart, W.S. (2003) Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochimica et Cosmochimica Acta, 67, 575586.Google Scholar
Sheldrick, G.M. (2015 a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015 b) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Wang, F., Michalski, G., Seo, J. and Ge, W. (2014) Geochemical, isotopic, and mineralogical constraints on atmospheric deposition in the hyper-arid Atacama Desert, Chile. Geochimica et Cosmochimica Acta, 135, 2948.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 146.3 KB