Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T06:22:37.807Z Has data issue: false hasContentIssue false

Currierite, Na4Ca3MgAl4(AsO3OH)12·9H2O, a new acid arsenate with ferrinatrite-like heteropolyhedral chains from the Torrecillas mine, Iquique Province, Chile

Published online by Cambridge University Press:  02 January 2018

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Stuart J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Australia
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
Maurizio Dini
Affiliation:
Pasaje San Agustin 4045, La Serena, Chile
Arturo A. Molina Donoso
Affiliation:
Los Algarrobos 2986, Iquique, Chile
*

Abstract

The new mineral currierite (IMA2016-030), Na4Ca3MgAl4(AsO3OH)12·9H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, canutite, chudobaite, halite, lavendulan, magnesiokoritnigite, quartz, scorodite and torrecillasite. Currierite occurs as hexagonal prisms, needles and hair-like fibres up to ∼200 μm long, in sprays. The crystal forms are ﹛100﹜ and ﹛001﹜. Crystals are transparent, with vitreous to silky lustre and white streak. The Mohs hardness is ∼2, tenacity is brittle, but elastic in very thin fibres, and the fracture is irregular. Crystals exhibit at least one good cleavage parallel [001]. The measured density is 3.08(2) g cm -3 and the calculated density is 3.005 g cm -3. Optically, currierite is uniaxial (–) with ω= 1.614(1) and ε= 1.613(1) (measured in white light). The mineral is slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobe analyses, is (Na3.95A12.96Ca2.74Mg1.28Fe0.633+Cu0.13K0.08Co0.03Σ11.80 (AS11.685+Sb0.325+Σ12(O56.96Cl0.04)Σ57H30.81. Currierite is hexagonal, P622, with a = 12.2057(9), c = 9.2052(7) Å, V= 1187.7(2) Å3 and Z = 1. The eight strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 10.63(100)(100), 6.12(20)(110), 5.30(15)(200), 4.61(24)(002), 4.002(35)(210), 3.474(29)(202), 3.021(96)(212) and 1.5227(29)(440,334,612). The structure of currierite (R1 = 2.27% for 658 Fo > 4σF reflections) is based upon a heteropolyhedral chain along c in which AlO6 octahedra are triple-linked by sharing corners with AsO3OH tetrahedra. Chains are linked to one another by bonds to 8(4 + 4)-coordinated Na and 8-coordinated Ca forming a three-dimensional framework with large cavities that contain rotationally disordered Mg(H2O)6 octahedra. The chain in the structure of currierite is identical to that in kaatialaite and a geometrical isomer of that in ferrinatrite. The mineral is named in honour of Mr. Rock Henry Currier (1940–2015), American mineral dealer, collector, author and lecturer.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boudjada, A. and Guitel, J.C. (1981) Structure cristalline d’un orthoarsénate acide de fer(III) pentahydraté: Fe (H2AsO4)3·5H2O. Acta Crystallographica, B37, 14021405.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond–valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357361.CrossRefGoogle Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.CrossRefGoogle Scholar
Currier, R.H. (1995) The Bolivian death switch. Mineralogical Record, 26, 195200.Google Scholar
Currier, R.H. (2008a) About mineral collecting – part 1. Mineralogical Record, 39, 305313.Google Scholar
Currier, R.H. (2008b) About mineral collecting – part 2. Mineralogical Record, 39, 409418.Google Scholar
Currier, R.H. (2009a) About mineral collecting – part 3. Mineralogical Record, 40, 4959.Google Scholar
Currier, R.H. (2009b) About mineral collecting – part 4. Mineralogical Record, 40, 165176.Google Scholar
Currier, R.H. (2009c) About mineral collecting – part 5. Mineralogical Record, 40, 194202.Google Scholar
Gutiérrez, H. (1975) Informe sobre una rápida visita a la mina de arsénico nativo, Torrecillas. Instituto de Investigaciones Geológicas, Iquique, Chile.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A., Dini, M. and Molina Donoso, A.A. (2013a) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co– analogue of herbertsmithite. Mineralogical Magazine, 77, 30473054.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2013b) Magnesiokoritnigite, Mg(AsO3OH)·H2O, from the Torrecillas mine, Iquique Province, Chile: the Mg–analogue of koritnigite. Mineralogical Magazine, 77, 30813092.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Hatert, F., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2014a) Canutite, NaMn3[AsO4]2[AsO2(OH)2], a new protonated alluaudite–group mineral from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 78, 787795.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2014b) Torrecillasite, Na(As,Sb)4 3+ O6Cl, a new mineral from the Torrecillas mine, Iquique Province, Chile: description and crystal structure. Mineralogical Magazine, 78, 747755.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2016a) Chongite, Ca3Mg2(AsO4)2(AsO3OH)2·4H2O, a new arsenate member of the hureaulite group from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 12551263.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2016b) Gajardoite, KCa0.5As43+ O6Cl2·5H2O, a new mineral related to lucabindiite and torrecillasite from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 12651272.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M., Molina Donoso, A.A. (2016c) Juansilvaite, Na5Al3[AsO3(OH)]4[AsO2 (OH)2]2(SO4)2·4H2O, a new arsenate-sulfate from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 619628.CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Scordari, F. (1977) The crystal structure of ferrinatrite, Na3(H2O)3[Fe(SO4)3] and its relationship to Maus's salt, (H3O)2K2﹛K0.5(H2O)0.56[Fe3O(H2O)3(SO4)6] (OH)2 . Mineralogical Magazine, 41, 375383.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Wood, R.M. and Palenik, G.J. (1999) Bond valence sums in coordination chemistry. Sodium-oxygen complexes. Inorganic Chemistry, 38, 39263930.CrossRefGoogle Scholar