Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T04:12:12.532Z Has data issue: false hasContentIssue false

Deposition and transport of gold by thiosulphates, Veitsch, Austria

Published online by Cambridge University Press:  05 July 2018

H. Kucha
Affiliation:
Institute of Geology and Mineral Deposits, Ave. Mickiewicza 30, 30-059 Kraków, Poland
W. Prohaska
Affiliation:
Institute of Geological Sciences, Mining University, A-8700 Leoben, Austria
E. F. Stumpfl
Affiliation:
Institute of Geological Sciences, Mining University, A-8700 Leoben, Austria

Abstract

Two types of gold can be distinguished in tetrahedrite from the Veitsch magnesite deposit, Austria. Primary gold present in unfractured massive tetrahedrite, has a grain size up to 18 μm and contains, on average, Cu 8.73, Ag 7.01, Au 78.63 and Hg 2.35 (wt.%). Secondary gold is present in fractures and is directly intergrown with digenite, covellite, Cu-thiosulphate, cuprite and chrysocolla but not with malachite or azurite. The secondary gold is up to 200 µm in size with an average composition of Cu 3.06, Ag 6.82, Au 86.41 and Hg 3.51 (wt.%). It is usually closely intergrown with thiosulphates containing up to 0.21 wt.% Au. This, together with the presence of ‘dirty’ gold with cloudy thiosulphate inclusions, directly indicates the transport and deposition of Au by a thiosulphate ligand. We believe this is the first reported direct evidence of gold transport and deposition by thiosulphate complexes in a natural environment.

Type
Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clayton, R. N. and Mayeda, T. K. (1963) Geochim. Cosmochim. Acta, 27, 43–52.CrossRefGoogle Scholar
Holzer, H. F. (1986) Austria. 15-40. In Mineral Deposits of Europe, vol. 3, Central Europe (Dunning, F.W. and Evans, A.M., eds.) 355 pp. Inst. Min. Metall. and Mineral. Soc. London.Google Scholar
Kueha, H., Wouters, R. and Arkens, O. (1989) Scanning Microscopy Int., 3, 89–97.Google Scholar
Kucha, H. and Viaene, W. (1993) Min. Deposita, 28, 13–21.CrossRefGoogle Scholar
Lakui, H.W., Curtin, G. C, Hubert, A. E., Shackette, H.T. and Doxtader, G. (1974) US Geol. Surv. Bull. 1330, 80 pp.Google Scholar
Mann, A. W. (1984) Econ. Geol., 79, 38–49.CrossRefGoogle Scholar
Pohl, W. (1990) Geologische Rundschau, 79, 291–9.CrossRefGoogle Scholar
Prochaska, W. (1993) Berg. HUtten. Monatsch., 4, 138–44.Google Scholar
Renders, P. J. and Seward, T. M. (1989) Geochim. Cosmochim. Acta, 53, 245–53.CrossRefGoogle Scholar
Seward, T. M. (1973) Geochim. Cosmochim. Acta, 37, 379–99.CrossRefGoogle Scholar
Seward, T. M. (1993) The hydrothermal geochemistry of gold. 37-62. In Gold Metallogeny and Exploration (Foster, R.P., ed.). Chapman & Hall. 432 pp.Google Scholar
Sehenberger, D. M. and Barnes, H. L. (1989) Geochim. Cosmochim. Acta, 53, 269–78.CrossRefGoogle Scholar
Valensi, G., Muylder Van, J. and Pourbaix, M. (1963) Soufre. In Atlas d'Equilibres Electrochimiques, 25°C (Pourbaix, M., Zubov de, N. and Muylder Van, J., eds.) Gauthier-Villars, Paris, 545-53.Google Scholar
Webster, J. G. (1987) Appl. Geochem., 2, 579–84.CrossRefGoogle Scholar