Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T04:30:39.673Z Has data issue: false hasContentIssue false

Description and crystal structure of nyholmite, a new mineral related to hureaulite, from Broken Hill, New South Wales, Australia

Published online by Cambridge University Press:  05 July 2018

P. Elliott*
Affiliation:
School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
P. Turner
Affiliation:
School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
P. Jensen
Affiliation:
School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
U. Kolitsch
Affiliation:
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, A-1010 Wien, Austria
A. Pring
Affiliation:
South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia

Abstract

Nyholmite, Cd3Zn2(AsO3OH)2(AsO4)2·4H2O, from the Block 14 Opencut, Broken Hill, New South Wales, Australia, is a new Cd-Zn arsenate species, isostructural with the minerals of the hureaulite group. The mineral occurs in a quartz-garnet-arsenopyrite matrix as white globules, tufted aggregates of fibrous crystals and radiating hemispheres of thin, colourless, bladed crystals. Associated minerals are goldquarryite, lavendulan-sampleite, scorodite-strengite and gypsum. Individual crystals are up to 0.2 mm in length and 0.05 mm across. The mineral is transparent to translucent with a vitreous lustre. It is brittle with an uneven fracture and a white streak. The Mohs hardness is 3–3.5 and the calculated density is 4.23 g cm–3 for the empirical formula. Electron microprobe analyses yielded CdO 34.58, ZnO 9.72, MnO 3.59, CuO 3.39, Al2O3 0.20, CaO 0.16, PbO 0.37, As2O5 34.55, P2O5 6.29 totalling 92.85 wt.%. The empirical formula, based on 20 oxygen atoms, is Ca0.03Pb0.02 Cd2.80Al0.04Zn1.24-Cu0.44Mn0.53[(AsO4)3.13(PO4)0.92]Σ4.05H1.91·3.79H2O. Nyholmite is monoclinic, C2/c, a = 18.062(4) Å, b = 9.341(2) Å, c = 9.844(2) Å, β = 96.17(3)°, V = 1651.2(6) Å3 (single-crystal data, at 123 K). The six strongest lines in the X-ray powder diffraction pattern are [d(Å),I,(hkl)]: 8.985,30,(200); 8.283,85,(110); 6.169,25,(111); 4.878,25,(002); 3.234,100,(2, 420); 3.079,65,(222, 511); 2.976’45’(113). The crystal structure was solved by Patterson methods and refined using 2045 observed reflections to R1(F) = 3.73%. The structure is characterized by a kinked, five-membered chain of edge-sharing Mφ6 (φ = unspecified anion) octahedra, or pentamer, that extends in the a direction. The pentamers link by sharing corners to form a sheet in the (001) plane. Pentamers are also linked, via corner-sharing, by (As,P)O4 groups forming thick slabs in the (001) plane. The slabs link in the c direction by cornersharing between octahedra and tetrahedra to form a dense heteropolyhedral framework. Moderate to weak hydrogen-bonding provides additional linkage between the slabs.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Averbuch-Pouchot, M.T. and Durif, A. (1970) Donnees crystallographiques sur Cd5H2(PO4)4-4H2O and Cd5H2(AsO4)4-4H2O. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 93, 123126. (in French).Google Scholar
Berry, L.G., Mason, B. and Dietrich, R.V. (1983) Mineralogy: Definitions, Descriptions, Determinations. 2nd edition. W.H. Freeman and Company, San Francisco, California, USA, 561 pp.Google Scholar
Birch, W.D. (1990) Minerals from the Kintore and Block 14 Opencuts, Broken Hill N.S.W.; a review of recent discoveries, including tsumebite, kipushite and otavite. Australian Mineralogist, 5, 125—141.Google Scholar
Birch, W.D. (1999) The Minerals. Pp. 88—256 in: Minerals of Broken Hill (W.D. Birch, editor). Broken Hill Council, Broken Hill, Australia.Google Scholar
Both, R.A. (1973) Minor element geochemistry of sulphide minerals in the Broken Hill lode (N.S.W.) in relation to the origin of the ore. Mineralium Deposita, 8, 349—369.CrossRefGoogle Scholar
Bustamante, A., Mattievich, E., Amorim, H.S., Vencato, I. and Silveira, M.F. (2005) The Mossbauer spectrum of synthetic hureaulite: Fe5(H2O)4(PO4H)2(PO4)2 . Hyperfine Interactions, 166, 599—603.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1996) The crystal structure of keyite, Cu3(Zn,Cu)4Cd2(AsO4)6(H2O)2, an oxysalt mineral with essential cadmium. The Canadian Mineralogist, 34, 623—630.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2000) Highly undersaturated anions in the crystal structure of andyrobertsite-calcio-andyrobertsite, a doubly acid arsenate of the form K(Cd,Ca)[Cu2+(AsO4)4 ﹛As(OH)2O2﹜] (H2O)2 . The Canadian Mineralogist, 38, 817—830.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C., Pinch, W.W. and Grice, J.D. (1999) Andyrobertsite and calcioandyrobertsite, two new minerals from the Tsumeb Mine, Tsumeb, Namibia. Mineralogical Record, 30, 181186.Google Scholar
de Amorim, H.S., do Amaral, M.R., Moreira, L.F. and Mattievich, E. (1996) Structure refinement of synthetic hureaulite Mn5(H2O)4[PO3(OH)2]2[PO4]2 . Journal of Materials Science Letters, 15, 18951897.CrossRefGoogle Scholar
Edwards, A.B. (1955) Cadmium in the Broken Hill lode. Proceedings of the Australasian Institute of Mining and Metallurgy, 176, 71—96.Google Scholar
Elliott, P., Brugger, J., Pring, A., Cole, M.L., Willis, A.C. and Kolitsch, U. (2008) Birchite, a new mineral from Broken Hill, New South Wales, Australia: description and structure refinement. American Mineralogist, 93, 910—917.CrossRefGoogle Scholar
Embrey, P.G., Fejer, E.E. and Clark, A.M. (1977) Keyite: a new mineral from Tsumeb. Mineralogical Record, 8, 87—90.Google Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837—838.CrossRefGoogle Scholar
Ferraris, G. and Abbona, F. (1972) The crystal structure of Ca5(HAsO4)2(AsO4)2-4H2O (Sainfeldite). Bulletin de la Societe Francaise de Minttralogie et de Cristallographie, 95, 33—41.Google Scholar
Ferraris, G. and Ivaldi, G. (1984) X—OH and O—H-O bond lengths in protonated oxyanions. Acta Crystallographica B, 40, 1 —6.Google Scholar
Giester, G., Kolitsch, U., Leverett, P., Turner, P. and Williams, P.A. (2007) The crystal structures of lavendulan, sampleite, and a new polymorph of sampleite. European Journal of Mineralogy, 19, 75—93.CrossRefGoogle Scholar
Hideki, A., Masaru, A. and Iwai, S.I. (1976) Synthesis and crystal structure of cadmium hydrogen phosphate hydrate. Tokyo Ika Shika Daigaku lyo Kizai Kenkyusho Hokoku, 10, 63—68. (in Japanese).Google ScholarPubMed
Johnson, C.D., Shakle, J.M., Johnston, M.G., Feldmann, J. and Macphee, D.E. (2003) Hydrothermal synthesis, crystal structure and aqueous stability of two cadmium arsenate phases, CdNH4(HAsO4)OH and Cd5H2(AsO4)4.4H2O. Journal of Materials Chemistry, 13, 1429—1432.CrossRefGoogle Scholar
Kampf, A.R. and Ross, C.R. (1988) End-member villyaellenite from Mapimi, Durango, Mexico: Descriptive mineralogy, crystal structure, and implications for the ordering of Mn and Ca in type villyaellenite. American Mineralogist, 73, 1172—1178.Google Scholar
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab- initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447—452.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV: The compatibility concept and its application. The Canadian Mineralogist, 19, 441—450.Google Scholar
Menchetti, S. and Sabelli, C. (1973) The crystal structure of hureaulite, Mn5(HOPO3)2(PO4)2(H2O)4 . Acta Crystallographica B, 29, 2541—2548.Google Scholar
Moore, P.B. and Araki, T. (1973) Hureaulite, Mn+ +5(H2O)4[PO4(OH)]2[PO4]2: its atomic arrangement. American Mineralogist, 58, 302—307.Google Scholar
Nriagu, J.O. (1984) Formation and stability of base metal phosphates in soils and sediments. Pp. 292—317 in: Phosphate Minerals (J.O. Nriagu and P.B. Moore, editors). Springer, Berlin.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ f(pZ) procedure for improved quantitative microanalysis. Pp. 104 — 106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Jensen, M.C. and Foord, E.E. (2003) Goldquarryite, a new Cd-bearing phosphate mineral from the Gold Quarry Mine, Eureka County, Nevada. Mineralogical Record, 34, 237—240.Google Scholar
Ropp, R.C. and Mooney, R.W. (1960) Phosphates of cadmium. Journal of the American Chemical Society, 82, 4848—4852.CrossRefGoogle Scholar
Sarp, H. (1984) Villyaellenite, H2(Mn,Ca)5(AsO4)-4H2O un nouveau mineral de Sainte-Marie aux Mines (France). Schweizerische Mineralogische und Petrographische Mitteilungen, 64, 323—328.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.CrossRefGoogle Scholar
Shape Software (1997) ATOMS for Windows and Macintosh V 4.0, Kingsport, Tennessee, U.S.A.Google Scholar
Sheldrick, G.M. (1997) SHELXL-97, a Program for the Solution of Crystal Structures. University of Gottingen, Gottingen, Germany.Google Scholar
Stevens, B.P. (1998) The origins of the Broken Hill rock types and their relevance to the mineralisation. Pp. 109-114 in: Abstracts from Broken Hill Exploration Initiative annual meeting, 1998. Australian Geological Survey Organisation Record 1998/25.Google Scholar
Stock, N., Stucky, G.D. and Cheetham, A.K. (2002) Synthesis and characterization of the synthetic minerals villyaellenite and sarkinite, Mn5(AsO4)2(HAsO4)2-6H2O and Mn2(AsO4)(OH). Zeitschrift für Anorganische und Allgemeine Chemie, 628, 357362.3.0.CO;2-V>CrossRefGoogle Scholar
Tauson, V.L., Babkin, D.N., Parkhomenko, I.Yu. and Men’shikov, V.I. (2004) On the mechanism of trace- element uptake during the hydrothermal growth of sulfide mineral crystals. Crystallography Reports, 49, 145157.CrossRefGoogle Scholar
Tauson, V.L., Parkhomenko, I.Yu., Babkin, D.N., Men’shikov, V.I. and Lustenberg, E.E. (2005) Cadmium and mercury uptake by galena crystals under hydrothermal growth: A spectroscopic and element thermo-release atomic absorption study. European Journal of Mineralogy, 17, 599610.CrossRefGoogle Scholar
Williams, P.A. (1990) Oxide Zone Geochemistry. Ellis Horwood, New York, 286 pp.Google Scholar
Willis, I.L., Brown, R.E., Stroud, W.J. and Stevens, B.P. (1983) The Early Proterozoic Willyama Supergroup: Stratigraphic sub-division and interpretation of high to low grade metamorphic rocks in the Broken Hill Block, N.S.W. Journal of the Geological Society of Australia, 30, 195224.CrossRefGoogle Scholar
Wilson, A.I., (editor). (1992) International Tables for Crystallography, vol. C. Kluwer Academic, Dordrecht, The Netherlands, 883 pp.Google Scholar
Yvon, K., Jeitschko, W. and Parthe, E. (1977) LAZY PULVERIX, a computer program, for calculating X-ray and neutron diffraction powder patterns. Journal of Applied Crystallography, 10, 7374.CrossRefGoogle Scholar
Supplementary material: File

Elliott et al. supplementary material

Supplementary Table 1

Download Elliott et al. supplementary material(File)
File 12.8 KB