Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:11:55.289Z Has data issue: false hasContentIssue false

Deveroite-(Ce): a new REE-oxalate from Mount Cervandone, Devero Valley, Western-Central Alps, Italy

Published online by Cambridge University Press:  05 July 2018

A. Guastoni
Affiliation:
Museo di Mineralogia, Università di Padova, Via Giotto 1, I-35122, Padova, Italy
F. Nestola*
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
P. Gentile
Affiliation:
Dipartimento di Scienze Geologiche e Geotecnologie, Università di Milano-Bicocca, Piazza della Scienza 4, I- 20100 Milan, Italy
F. Zorzi
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
M. Alvaro
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
A. Lanza
Affiliation:
Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35131 Padova, Italy
L. Peruzzo
Affiliation:
C.N.R., Istituto di Geoscienze e Georisorse, Via Gradenigo 6, I-35131 Padova, Italy
M. Schiazza
Affiliation:
Department of Earth Sciences, University G. d’Annunzio, I-66100 Chieti, Italy
N. M. Casati
Affiliation:
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract

Deveroite-(Ce), ideally Ce2(C2O4)3·10H2O, is a new mineral (IMA 2013-003) found in the alpine fissures of Mount Cervandone, overlooking the Devero Valley, Piedmont, Italy. It occurs as sprays of colourless elongated tabular, acicular prisms only on cervandonite-(Ce). It has a white streak, a vitreous lustre, is not fluorescent and has a hardness of 2–2.5 (Mohs' scale). The tenacity is brittle and the crystals have a perfect cleavage along {010}. The calculated density is 2.352 g/cm3. Deveroite-(Ce) is biaxial (–) with 2V of ∼77°, is not pleochroic and the extinction angle (β ∧ c) is ∼27°. No twinning was observed. Electron microprobe analyses gave the following chemical formula: (Ce1.01Nd0.33La0.32Pr0.11Y0.11Sm0.01Pb0.04U0.03Th0.01Ca0.04)2.01(C2O4)2.99·9.99H2O. Although synchrotron radiation was not used to solve the structure of deveroite-(Ce) the extremely small size of the sample (13 μm × 3 μm × 1 μm) did not allow us to obtain reliable structural data. However, it was possible to determine the space group (monoclinic, P21/c) and the unit-cell parameters, which are: a = 11.240(8) Å, b = 9.635(11) Å, c = 10.339(12) Å, β = 114.41(10)°, V = 1019.6 Å3. The strongest lines in the powder diffraction pattern [d in Å (I)(hkl)] are: 10.266(100)(100); 4.816(35.26)(21); 3.415(27.83)(300); 5.125(24.70)(200); and 4.988(22.98)(111). Deveroite-(Ce) is named in recognition of Devero valley and Devero Natural Park.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertini, C. (1991) L’Alpe Devero ed i suoi minerali. Centro Studi Piero Ginocchi Crodo, Ed. P.G.A., Dormelletto (NO), Italy, 299 pp.Google Scholar
Albertini, C. and Meisser, N., (2012) Lindbergite del Monte Cervandone, Alpe Devero, Baceno. Rivista Mineralogica Italiana, 38, 1825.Google Scholar
Armbruster, T., Bühler, C., Graeser, S., Stalder, H.A. and Amthauer, G., (1988) Cervandonite-(Ce), (Ce,Nd,La)(Fe3+,Fe2+,Ti4+,Al)3SiAs(Si,As)O13, a new Alpine fissure mineral. Schweizerische Mineralogische und Petrographische Mitteilungen, 68, 125132.Google Scholar
Atencio, D., Coutinho, J.M.V., Graeser, S., Matioli, P.A. and Menezes Filho, L.A.D. (2004) Lindbergite, a new Mn oxalate dihydrate from Boca Rica mine, Galiléia, Minas Gerais, Brazil, and other occurrences. American Mineralogist, 89, 10871091.CrossRefGoogle Scholar
Chisholm, J.E., Jones, G.C. and Purvis O.W. (1987) Hydrated copper oxalate, moolooite, in lichens. Mineralogical Magazine, 51, 715718.CrossRefGoogle Scholar
Dal Piaz, G. (1975) Angelo Bianchi. La val Devero ed i suoi minerali. Memorie Istituto Geologia Università Padova, allegato volume X, Società Cooperativa, Tipografica, Padova, Italy.Google Scholar
Demartin, F. and Gramaccioli, C.M. (2008) The crystal structure of Cervandonite-(Ce), an interesting example of As3+ ? Si diadochy. The Canadian Mineralogist, 46, 423430.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Pilati, T., (1994) Paraniite-(Y), a new tungstate arsenate mineral from Alpine fissures. Schweizerische Mineralogische und Petrographische Mitteilungen, 74, 155160.Google Scholar
Gammons, C.H. and Wood, S.A. (2000) The aqueous geochemistry of REE. Part 8: Solubility of ytterbium oxalate and the stability of Yb(III)-oxalate complexes in water at 25ºC to 80ºC. Chemical Geology, 166, 103124.CrossRefGoogle Scholar
Gilpin, V. and McCrone, W.C. (1952) Lanthanum oxalate decahydrate, La2(C2O4)3·10H2O. Analytical Chemistry, 24, 225226.CrossRefGoogle Scholar
Graeser, S. (1966) Asbecasit und Cafarsit, zwei neue Mineralien aus dem Binnatal (Kt. Wallis). Schweizerische Mineralogische und Petrographische Mitteilungen, 46, 367375.Google Scholar
Graeser, S. and Albertini, C., (1995) Wannigletscher und Conca Cervandone. Lapis, 20, 4164. (in German).Google Scholar
Graeser, S. and Schwander, H., (1987) Gasparite-(Ce) and monazite-(Nd): two new minerals to the monazite group from the Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 67, 103113.Google Scholar
Graeser, S. and Stalder, H.A. (1976) Mineral-Neufunde aus der Schweiz und angrenzenden Gebieten (II). Schweizer Strahler, 4, 158171.Google Scholar
Graeser, S., Schwander, H., Demartin, F., Gramaccioli, C.M., Pilati, T., and Reusser, E., (1994) Fetiasite (Fe2+,Fe3+,Ti)3O2[As2O5], a new arsenite mineral: its description and structure determination. American Mineralogist, 79, 9961002.Google Scholar
Guastoni, A. (2009) Monte Cervandone. Recenti novità mineralogiche. Rivista Mineralogica Italiana, 35, 3848.Google Scholar
Guastoni, A., Cámara, F. and Nestola, F., (2010) Arsenic-rich fergusonite-beta-(Y) from Mount Cervandone (Western Alps, Italy): crystal structure and genetic implications. American Mineralogist, 95, 487494.CrossRefGoogle Scholar
Guastoni, A., Pezzotta, F., and Vignola, P., (2006) Characterization and genetic inferences of arsenates, sulfates and vanadates of Fe, Cu, Pb, Zn from Mount Cervandone (Western Alps, Italy). Periodico di Mineralogia, 75, 141150.Google Scholar
Hofmann, B.A. and Bernasconi, S.M. (1998) Review of occurrences and carbon isotope geochemistry of oxalate minerals: implications for the origin and fate of oxalate in diagenetic and hydrothermal fluids. Chemical Geology, 149, 127146.CrossRefGoogle Scholar
Huang, S.H., Zhou, G.D. and Mak, T.C.W. (1991) Crystal structure of lanthanum (III) oxalate decahydrate. Journal of Crystallographic and Spectroscopic Research, 21, 127131.CrossRefGoogle Scholar
Krzemnicki, M. (1996) Mineralogical investigation on hydrothermal As- and REE-bearing minerals within the gneisses of the Monte Leone nappe (Binntal region, Switzerland). Dissertation Universität Basel, Switzerland, 86 pp.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J.L. (1988) Abinitio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.CrossRefGoogle Scholar
Ollendorff, W. and Weigel, F., (1969) The crystal structure of some lanthanide oxalate decahydrates, Ln2(C2O4)3·10H2O, with Ln = La, Ce, Pr, and Nd. Inorganic and Nuclear Chemistry Letters, 5, 263269.CrossRefGoogle Scholar
Peacor, D.R., Rouse, R.C., Essene, E.J. and Lauf, R.J. (1999) Coskrenite-(Ce), (Ce,Nd,La)2(SO4)2 (C2O4)·8H2O, a new rare earth oxalate mineral from Alum Cave Bluff, Tennessee: characterization and crystal structure. The Canadian Mineralogist, 37, 14531462.Google Scholar
Rouse, R.C., Peacor, D.R., Essene, E.J., Coskren, T.D. and Lauf, R.J. (2001) The new minerals levinsonite-(Y) [(Y,Nd,Ce)Al(SO4)2(C2O4)·12H2O] and zugshunstite-( Ce) [(Ce,Nd,La)Al(SO4)2(C2O4)·12H2O]: coexisting oxalates with different structures and differentiation of LREE and HREE. Geochimica et Cosmochimica Acta, 65, 11011115.CrossRefGoogle Scholar
Russ, J., Palma, R.L., Loyd, D.H., Boutton, T.W. and Coy, M.A. (1996) Origin of the whewellite-rich rock crust in the Lower Pecos region of southwest Texas and its significance to paleoclimate reconstructions. Quaternary Research, 46, 2736.CrossRefGoogle Scholar