Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T06:40:33.719Z Has data issue: false hasContentIssue false

Equilibria in the Mg-rich part of the pyroxene quadrilateral

Published online by Cambridge University Press:  05 July 2018

G. A. Jenner
Affiliation:
Department of Geology, University of Tasmania, Hobart, Tasmania, Australia 7001
D. H. Green
Affiliation:
Department of Geology, University of Tasmania, Hobart, Tasmania, Australia 7001

Abstract

Pyroxene phase relations in the Mg-rich corner of the pyroxene quadrilateral, at 1 atmosphere, have been reinvestigated. Experimental studies on sixteen selected compositions in the systems CMS and CFMS were undertaken in the temperature range 1100–1400 °C. The results of this study clarify our understanding of the pyroxene stability relations at low pressure. In particular, the demonstration that there is a high-temperature stability field of orthoenstatite denies the existence of a stable (or real) invariant point defined by the reactions OE = PE + DI, PE + DI = PI, and OE + DI = PI, in the system CaMgSi2O6-Mg2Si2O6. New phase relations, consistent with the experimental findings of this and other studies, for the Mg-rich corner of the pyroxene quadrilateral are presented. These new phase relations may be of use in interpreting the origin of volcanic rocks containing magnesian pigeonite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Max-Planck Institut für Chemie, Saarstrasse 23, Postfach 3060, D-6500 Mainz, West Germany.

References

Anastasiou, P., and Siefert, F. (1972) Contrib. Mineral. Petrol. 34, 272–87.CrossRefGoogle Scholar
Atlas, L. (1952) J. Geol. 60, 124–47.CrossRefGoogle Scholar
Boyd, F. R. and Schairer, J. F. (1964) J. Petrol. 5,275–309.CrossRefGoogle Scholar
Cameron, W. E. (1980) Geol. 8, 562.Google Scholar
Dallwitz, W. B., Green, D. H., and Thompson, J. E. (1966) J. Petrol. 7, 375–403.CrossRefGoogle Scholar
Duncan, R. A., and Green, D. H. (1980a) Geol. 8, 22–6.2.0.CO;2>CrossRef2.0.CO;2>Google Scholar
Duncan, R. A., and Green, D. H. (1980ft) Ibid. 8, 562–3.2.0.CO;2>CrossRef2.0.CO;2>Google Scholar
Foster, W. R., and Lin, H. C. (1975) Trans. Am. Geophys. Union 56, 470.Google Scholar
Griffin, B. J. (1979) Geology Dept., University of Tasmania Publication 343.Google Scholar
Huebner, J. S. (1980) Reviews in Mineralogy (Min. Soc. Am.) 7, 213–88.Google Scholar
Huebner, J. S. and Turnock, A. C. (1980) Am. Mineral. 65, 225–71.Google Scholar
Jenner, G. A. (1981) Chem. Geol. 33, 307–32.CrossRefGoogle Scholar
Jenner, G. A. (1982) Petrogenesis of high-Mg andesites. University of Tasmania Ph.D. thesis (unpubl.).Google Scholar
Komatsu, M. (1980) Contrib. Mineral. Petrol. 74, 329–38.CrossRefGoogle Scholar
Kushiro, I. (1972) Am. Mineral. 57, 1260–71.Google Scholar
Longhi, J., and Boudreau, A. E. (1980) Ibid. 65, 563–73.Google Scholar
Mori, T, and Green, D. H. (1975) Earth Planet. Set Lett. 26, 277–86.CrossRefGoogle Scholar
Nakamura, Y. (1971) Mineral. J. 6, 264–76.CrossRefGoogle Scholar
Smyth, J. R. (1974) Am. Mineral. 59, 345–52.Google Scholar
Takeuchi, Y. (1978) Recent Prog. Nat. Set Japan 3, 151–81.Google Scholar
Tilley, C. E., Yoder, H. S. Jr., and Schairer, J. F. (1964) Carnegie Inst. Washington Yearb. 63, 92–7.Google Scholar
Warner, R. D. (1975) Geochim. Cosmochim. Acta 39, 1413–26.CrossRefGoogle Scholar
Yang, H.-Y. (1973) Am. J. Sci. 273, 488–97.CrossRefGoogle Scholar
Yang, H.-Y. and Foster, W. R. (1972) Am. Mineral. 57, 1232–41.Google Scholar