Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T20:30:32.822Z Has data issue: false hasContentIssue false

Erssonite, CaMg7Fe3+2(OH)18(SO4)2⋅12H2O, a new hydrotalcite-supergroup mineral from Långban, Sweden

Published online by Cambridge University Press:  02 September 2021

Elena S. Zhitova*
Affiliation:
Institute of Volcanology and Seismology, Russian Academy of Sciences, Bulvar Piypa 9, Petropavlovsk-Kamchatsky683006, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Akad. Semenova 1, Chernogolovka142432, Russia
Erik Jonsson
Affiliation:
Geological Survey of Sweden, Department of Mineral Resources, Box 670, SE-75128Uppsala, Sweden Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36Uppsala, Sweden
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow119991, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow119071, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow119991, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow119991, Russia
Konstantin V. Van
Affiliation:
Institute of Experimental Mineralogy RAS, Chernogolovka, 142432Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034St Petersburg, Russia
*
*Author for correspondence: Elena S. Zhitova, Email: zhitova_es@mail.ru

Abstract

The new wermlandite-group mineral erssonite, ideally CaMg7Fe3+2(OH)18(SO4)2⋅12H2O (or [Mg7Fe3+2(OH)18][Ca(SO4)2]⋅12H2O), was discovered in a late-stage, low-temperature assemblage in cavities of a magnetite-bearing dolomitic rock from the Långban deposit, Värmland county, Bergslagen ore province, Sweden. The associated minerals are dolomite, calcite, members of the magnetite–magnesioferrite solid-solution series, phlogopite, chrysotile, pyroaurite and norbergite. Erssonite has a vitreous lustre and forms colourless, platy hexagonal crystals flattened on [0001], up to 0.5 mm across and up to 10 μm thick, occurring mainly as aggregates in cavities of dolomitic rock. Erssonite is malleable; separate crystals are flexible and non-elastic, with a perfect, mica-like cleavage on {0001}. The calculated density is equal to 2.02 g⋅cm–3. Raman spectroscopy shows the presence of typical bands for S–O bonds attributed to intercalated SO42– anions and structural OH anions together with the absence of C–O bonds, attributed to carbonate anions. The chemical composition is (wt.%, electron microprobe, H2O content is calculated from structure data): MgO 28.67, CaO 2.76, Al2O3 0.23, Cr2O3 0.23, Fe2O3 16.00, SiO2 0.48, SO3 14.80, H2O 35.58, total 98.75. The empirical formula based on 38 O atoms is H41.48Ca0.52Mg7.47Fe3+2.11Al0.05Cr0.03S1.94Si0.08O38. The ideal formula is CaMg7Fe3+2(OH)18(SO4)2⋅12H2O or {Mg7Fe3+2(OH)18}{[Ca(H2O)6](SO4)2(H2O)6}. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R = 0.093. Erssonite is trigonal, P$\bar{3}$c1, with a = 9.3550(6), c = 22.5462(14) Å, V = 1708.8(2) Å3 and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)(hkl)] are: 11.22 (90)(002), 5.63 (64)(004), 4.670 (100)(110, 104, 014), 2.626 (64)(032, 302), 2.435 (66)(034, 304) and 1.951 (45)(038, 308). The mineral is named in honour of the Swedish amateur mineralogist Dr. Anders Ersson (b. 1971).

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Boström, K., Rydell, H. and Joensuu, O. (1979) Långban – an exhalative sedimentary deposit? Economic Geology, 74, 10021011.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian with English abstract].Google Scholar
Bruker (2009 ) Topas, version 4.2; General Profile and Structure Analysis Software for Powder Diffraction Data. Bruker-AXS, Karlsruhe, Germany.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1996) The crystal structure of shigaite, AlMn2+2(OH)6]3(SO4)2Na(H2O)6{H2O}6, hydrotalcite-group mineral. The Canadian Mineralogist, 34, 9197.Google Scholar
CrysAlisPro (2014) CrysAlisPro version 1.171.37.35; Data Collection and Processing Software for Agilent X-ray Diffractometers. Agilent Technologies UK Ltd., Oxford, UK.Google Scholar
do Amaral, L.F.M., Wypych, F. and de Freitas, R.A. (2021) Shigaite, natroglaucocerinite and motukoreaite-like layered double hydroxides as Pickering emulsifiers in water/oil emulsions: A comparative study. Applied Clay Science, 201, 105918.CrossRefGoogle Scholar
Duan, X., and Evans, D.G. (editors) (2006) Layered Double Hydroxides. Vol. 119. Springer Science & Business Media, Berlin.CrossRefGoogle Scholar
Frost, R.L., Theiss, F.L., López, A. and Scholz, R. (2014) Vibrational spectroscopic study of the sulphate mineral glaucocerinite (Zn,Cu)10Al6(SO4)3(OH)32⋅18H2O – A natural layered double hydroxide. Spectrochimica Acta, A127, 349354.CrossRefGoogle Scholar
Holtstam, D. and Langhof, J. (editors) (1999) Långban. The Mines, Their Minerals, Geology and Explorers. Raster Förlag, Stockholm, 215 pp.Google Scholar
Huminicki, D.M. and Hawthorne, F.C. (2003) The crystal structure of nikischerite, NaFe2+6Al3(SO4)2(OH)18(H2O)12, a mineral of the shigaite group. The Canadian Mineralogist, 41, 7982.10.2113/gscanmin.41.1.79CrossRefGoogle Scholar
Huminicki, D.M., Hawthorne, F.C., Grice, J.D., Roberts, A.C. and Jambor, J.L. (2003) Nikischerite: a new mineral from the Huanuni tin mine, Dalence Province, Oruro Department, Bolivia. The Mineralogical Record, 34, 155159.Google Scholar
Jonsson, E. and Boyce, A.J. (1999) Correlation of mineral parageneses with S and O isotopic variation in Pb-Mn-As-Sb-bearing veins at Långban, Sweden. Pp. 951954 in: Mineral Deposits: Processes to Processing (Stanley, C.J. et al. , editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Jonsson, E. and Broman, C. (2002) Fluid inclusions in late-stage Pb-Mn-As-Sb mineral assemblages in the Långban deposit, Bergslagen, Sweden. The Canadian Mineralogist, 40, 4765.CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.10.2113/gscanmin.45.5.1307CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Génin, J.-M.R., Kameda, T. and Colombo, F. (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.CrossRefGoogle Scholar
Moraes, P.I.R., Wypych, F. and Leitão, A.A. (2019) DFT study of layered double hydroxides with cation exchange capacity: (A+(H2O)6)[M2+6Al3(OH)18(SO4)2]⋅6H2O (M2+ = Mg, Zn and A+ = Na, K). The Journal of Physical Chemistry C, 123, 98389845.10.1021/acs.jpcc.9b00470CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.10.1107/S0021889811038970CrossRefGoogle Scholar
Moore, P.B. (1971) Wermlandite, a new mineral from Långban, Sweden. Lithos, 4, 213217.CrossRefGoogle Scholar
Nysten, P., Holtstam, D., Jonsson, E. (1999) The Långban minerals. Pp 89183 in: Långban: The Mines, Their Minerals, Geology and Explorers (Holtstam, D. and Langhof, J., editors). Raster Förlag, Stockholm.Google Scholar
Rius, J. and Allmann, R. (1984) The superstructure of the double layer mineral wermlandite [Mg7(Al0.57Fe3+0.43)(OH)18]2+[(Ca0.6Mg0.4)(SO4)2(H2O)12]2–. Zeitschrift für Kristallographie – Crystalline Materials, 168, 133144.10.1524/zkri.1984.168.14.133CrossRefGoogle Scholar
Rives, V. (2001) Layered Double Hydroxides: Present and Future. Nova Publishers, New York.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sotiles, A.R., Baika, L.M., Grassi, M.T. and Wypych, F. (2018) Cation exchange reactions in layered double hydroxides intercalated with sulfate and alkaline cations (A(H2O)6)[M2+6Al3(OH)18(SO4)2]⋅6H2O (M2+ = Mn, Mg, Zn; A+ = Li, Na, K). Journal of the American Chemical Society, 141, 531540.CrossRefGoogle Scholar
Sotiles, A.R., Gomez, N.A.G., dos Santos M.P., Grassi M.T. and Wypych F. (2019) Synthesis, characterization, thermal behavior and exchange reactions of new phases of layered double hydroxides with the chemical composition [M2+6Al3(OH)18(SO4)2]⋅(A(H2O)6)⋅6H2O (M2+ = Co, Ni; A= Li+, Na+, K+). Applied Clay Science, 181, 105217.CrossRefGoogle Scholar
Strand, U. (2016) Quintinit–2H, ett nytt mineral för Långban. LångbansNytt, 22, 2123.Google Scholar
Wachowiak, J. and Pieczka, A. (2016) Motukoreaite from the Kłodawa Salt Dome, Central Poland. Mineralogical Magazine, 80, 277289.CrossRefGoogle Scholar
Zhitova, E.S., Krivovichev, S.V., Pekov, I.V. and Greenwell, H.C. (2019) Crystal chemistry of natural layered double hydroxides. 5. Single-crystal structure refinement of hydrotalcite, [Mg6Al2(OH)16](CO3)(H2O)4. Mineralogical Magazine, 83, 269280.CrossRefGoogle Scholar
Zhitova, E.S., Pekov, I.V., Chukanov, N.V., Yapaskurt, V.O., Bocharov, V.N. (2020) Minerals of the system stichtite–pyroaurite–iowaite–woodallite from serpentinites of the Terekta Ridge (Gorny Altai, Russia). Russian Geology and Geophysics, 61, 3646.CrossRefGoogle Scholar
Zhitova, E.S., Chukanov, N.V., Jonsson, E., Pekov, I.V., Belakovsky, D.I., Vigasina, M.F., Zubkova, N.V., Van, K.V. and Britvin, S.N. (2021) Erssonite, IMA 2021-016. CNMNC Newsletter 61. Mineralogical Magazine, 85, https://doi.org/10.1180/mgm.2021.48Google Scholar
Supplementary material: File

Zhitova et al. supplementary material

Zhitova et al. supplementary material

Download Zhitova et al. supplementary material(File)
File 206.9 KB