Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T08:11:05.878Z Has data issue: false hasContentIssue false

Evolution of pyrochlore in carbonatites of the Amba Dongar complex, India.

Published online by Cambridge University Press:  07 June 2021

Shrinivas G. Viladkar
Affiliation:
Indian Institute of Science Education and Research Bhopal Department of Earth and Environmental Sciences Bhopal, By-pass Road, Bhauri, Bhopal462066, India
Natalia V. Sorokhtina*
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Kosygin Street, 19-1, Moscow119991, Russian Federation.
*
*Author for correspondence: Natalia V. Sorokhtina Email: nat_sor@rambler.ru

Abstract

Pyrochlore-group minerals are common accessory rare-metal bearing minerals in the calcite and ankerite carbonatites of the Amba Dongar complex (India). Pyrochlore from the Amba Dongar carbonatites differs from that in other Indian complexes in Ta, Zr, Ti, rare earth element (REE) and Pb contents, but is similar with respect to Ca, Ba and Sr abundances. The evolution of pyrochlore composition was studied to understand the alteration processes and the formation of late-stage pyrochlores enriched in REE and Pb. The early magmatic pyrochlore are calcio- and niobium-dominant types and were replaced by secondary cation-deficient varieties as a consequence of the action of hydrothermal fluids and supergene weathering. These processes produce changes mainly at the A site, rarely at the B site, and the original F is replaced by OH groups. Calcium and Na can be extracted from the structure at the alteration stage and charge balance is achieved by the introduction of REE, Th, U, Ba or Sr. At the latest supergene stages, marginal and fractured zones of pyrochlore grains are altered to Pb-rich, Si-rich and cation-deficient hydrated varieties. The magmatic pyrochlore was crystallised in a highly alkaline environment at a high activity of Ca and at temperatures near 600°C, the alteration of pyrochlore began in a hydrothermal environment at temperatures below 350°C. The major compositional changes that are associated with the alteration are summarised by the following reactions: Ca2+ + Nb5+REE3+ + Ti4+; Nb5+ + Fe3+ → Ti4+ + Zr4+; and 2Nb5+ + Ca2+ → Ti4+ + Si4+ + U4+.

Type
Article – Gregory Yu. Ivanyuk memorial issue
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is part of a thematic set ‘Alkaline Rocks’ in memory of Dr Gregory Yu. Ivanyuk

Guest Associate Editor: Anatoly Zaitsev

References

Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.10.3749/canmin.48.3.673CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Bastos Neto, A.C. and Pereira, V.P. (2017) Ralstonite renamed hydrokenoralstonite, coulsellite renamed fluornatrocoulsellite, and their incorporation into the pyrochlore supergroup. The Canadian Mineralogist, 55, 115120.10.3749/canmin.1600056CrossRefGoogle Scholar
Banerjee, A. and Chakrabarti, R. (2019) A geochemical and Nd, Sr and stable Ca isotopic study of carbonatites and associated silicate rocks from the ~65 Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India: implications for crustal contamination, carbonate recycling, hydrothermal alteration and source-mantle mineralogy. Lithos, 326–327, 572585.CrossRefGoogle Scholar
Bonazzi, P., Bindi, L., Zoppi, M., Capitani, G.C. and Olmi, F. (2006) Single-crystal diffraction and transmission electron microscopy studies of “silicified” pyrochlore from Narssarssuk, Julianehaab district, Greenland. American Mineralogist, 91, 794801.CrossRefGoogle Scholar
Burtseva, M.V., Ripp, G.S., Doroshkevich, A.G., Viladkar, S.G. and Varadan, R. (2013) Features of mineral and chemical composition of the Khamambettu carbonatites, Tamil Nadu. Journal Geological Society of India, 81, 655664.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. European Journal of Mineralogy, 14, 821836.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Williams, C.T. (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. Pp. 293340 in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (Wall, F. and Zaitsev, A.N., editors), Mineralogical Society Series 10, London.Google Scholar
Chakhmouradian, A.R, Reguir, E.P., Kressall, R.D., Crozier, J., Pisiak, L.K, Sidhu, R. and Yang, P. (2015) Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geology Reviews, 64, 642666.CrossRefGoogle Scholar
Chandra, J., Paul, D., Viladkar, S.G. and Sensarma, S. (2018) Origin of the Amba Dongar carbonatite complex, India and its possible linkage with the Deccan large igneous province. Geological Society, London, Special Publications, 463, 137169.CrossRefGoogle Scholar
Christy, A.G. and Atencio, D. (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.CrossRefGoogle Scholar
Deans, T., Sukheswala, R.N., Sethna, S.F. and Viladkar, S.G. (1972) Metasomatic feldspar rocks (potash fenites) associated with the fluorite deposits and carbonatites of Amba Dongar, Gujarat, India. Transactions of the Institution of Mining and Metallurgy, 81, B1B9.Google Scholar
Deans, T., Sukheswala, R.N., Sethna, S.F. and Viladkar, S.G. (1973) Discussions and contributions: metasomatic feldspar rocks (potash fenites) associated with the fluorite deposits and carbonatites of Amba Dongar, Gujarat, India. Transactions of the Institution of Mining and Metallurgy, 82, B33B40.Google Scholar
Doroshkevich, A.G., Viladkar, S.G., Rip, G.S. and Burtseva, M.V. (2009) Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. The Canadian Mineralogist, 47, 11051116.CrossRefGoogle Scholar
Dumańska-Słowik, M., Pieczka, A., Temp, G., Olejniczak, Z. and Heflik, W. (2014) “Silicified” pyrochlore from nepheline syenite (mariupolite) of the Mariupol massif, SE Ukraine: A new insight into the role of silicon in the pyrochlore structure. American Mineralogist, 99, 20082017.CrossRefGoogle Scholar
Fosu, B.R., Ghosh, P., Chew, D.M. and Viladkar, S.G. (2019) Composition and U–Pb ages of apatite in the Amba Dongar carbonatite-alkaline complex, India. Geological Journal, 54, 34383454.CrossRefGoogle Scholar
Fosu, B.R., Ghosh, P. and Viladkar, S.G. (2020) Clumped isotope geochemistry of carbonatites in the north-western Deccan igneous province: aspects of evolution, post-depositional alteration and mineralization. Geochimica et Cosmochimica Acta, 274, 118135.CrossRefGoogle Scholar
Geisler, T., Pöml, P., Stephan, T., Janssen, A. and Putnis, A. (2005) Experimental observation of an interface-controlled pseudomorphic replacement reaction in a natural crystalline pyrochlore. American Mineralogist, 90, 16831687.10.2138/am.2005.1970CrossRefGoogle Scholar
Ghose, I., Fialin, M., Kienast, J.R. and Viladkar, S.G. (1997) Low-Th pyrochlore in carbonatite from the Amba Dongar carbonatite-alkaline complex, Gujarat, India. Neues Jahrbuch für Mineralogie – Monatshefte, 1, 3448.10.1127/njmm/1997/1997/34CrossRefGoogle Scholar
Gwalani, L.G., Rock, N.M.S., Chang, W.J., Fernandez, S., Allégre, C.J. and Prinzhofer, A. (1993) Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan igneous province, Gujarat, India: 1. Geology, petrography and petrochemistry. Mineralogy and Petrology, 47, 219253.CrossRefGoogle Scholar
Hoda, S.Q. and Krishnamurthy, P. (2020) Mineralogy, geochemistry and evolution of carbonatites of Samchampi alkaline complex, Assam, India. Journal of Applied Geochemistry, 22, 3141.Google Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American Mineralogist, 62, 403410.Google Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. Pp. 105148 in Carbonatites: Genesis and Evolution (Bell, K., editor). Chapman and Hall, London.Google Scholar
Hogarth, D.D. (2013) The pyrochlore group: remarks on nomenclature. The Canadian Mineralogist, 51, 801.10.3749/canmin.51.5.801CrossRefGoogle Scholar
Hogarth, D.D., Williams, C.T. and Jones, P. (2000) Primary zoning in pyrochlore group minerals from carbonatites. Mineralogical Magazine, 64, 683697.10.1180/002646100549544CrossRefGoogle Scholar
Ivanyuk, G.Yu., Konopleva, N.G., Yakovenchuk, V.N., Pakhomovsky, Y.A., Panikorovskii, T.L., Kalashnikov, A.O., Bocharov, V.N., Bazai, A.A., Mikhailova, J.A. and Goryainov, P. M. (2018) Three-D mineralogical mapping of the Kovdor phoscorite-carbonatite complex, NW Russia: III. Pyrochlore supergroup minerals. Minerals, 8, 277.CrossRefGoogle Scholar
Kartashov, P.M., Voloshin, A.V. and Pakhomovsky, Ya.A. (1992) On plumbopyrochlore from Western Mongólia. Doklady Akademii Nauk SSSR, 322, 11371140.Google Scholar
Kogarko, L.N., Sorokhtina, N.V., Zaitsev, V.A. and Senin, V.G. (2009) Rare metal mineralization of calcite carbonatites from the Cape Verde archipelago. Geochemistry International, 47, 531549.CrossRefGoogle Scholar
Krishnamurthy, P. (2019) Carbonatites of India. Journal of the Geological Society of India, 94, 117138.10.1007/s12594-019-1281-yCrossRefGoogle Scholar
Lee, M.J., Lee, J.I., Garcia, D., Moutte, J., Williams, C.T., Wall, F. and Kim, Y. (2006) Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: implications for the genesis of phoscorite and carbonatite association. Geochemical Journal, 40, 113.CrossRefGoogle Scholar
Li, T., Li, Z., Fan, G., Fan, H., Zhong, J., Jahdali, N.S., Qin, M., Jehani, A.M., Wang, F. and Nahdi, M.M. (2020) Hydroxyplumbopyrochlore, IMA 2018-145. CNMNC Newsletter 54. Mineralogical Magazine, 84, 359365, https://doi.org/10.1180/mgm.2020.21Google Scholar
Lottermoser, B.G. and England, B.M. (1988) Compositional variation in pyrochlores from the Mt Weld carbonatite laterite, Western Australia. Mineralogy and Petrology, 38, 3751.CrossRefGoogle Scholar
Lumpkin, G.R. (2001) Alpha-decay damage and aqueous durability of actinide host phases in natural systems. Neues Neues Jahrbuch für Mineralogie – Monatshefte, 289, 136166.Google Scholar
Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup. American Mineralogist, 80, 732743.CrossRefGoogle Scholar
Mackay, D.A.R., Simandl, G.J. (2015) Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits. Geochemistry: Exploration, Environment, Analysis, 15, 167178.Google Scholar
Magna, T., Viladkar, S.G., Rapprich, V., Pour, O., Hopp, J. and Čejková, B. (2020) Nb–V-enriched sövites of the northeastern and eastern part of the Amba Dongar carbonatite ring dike, India a reflection of post-emplacement hydrothermal overprint? Geochemistry, 80, 111.CrossRefGoogle Scholar
Melluso, L., Srivastava, R.K., Guarino, V., Zanetti, A. and Sinha, A.K. (2010) Mineral compositions and petrogenetic evolution of the ultramafic-alkaline – carbonatitic complex of Sung Valley, Northeastern India. The Canadian Mineralogist, 48, 205229.CrossRefGoogle Scholar
Nagabhushanam, B., Durai Raju, S., Mundra, K.L., Rai, S.D., Purohit, R.K., Verma, M.B. and Nanda, L.K. (2018) LREE-Nb mineralization in the south western part of Ambadongar carbonatite complex, Chhota Udepur district, Gujarat, India. Current Science, 114, 16081610.CrossRefGoogle Scholar
Nanda, L.K., Verma, M.B., Purohit, R.K., Khandelwal, M.K., Rai, S.D. and Mundra, K.L. (2017) LREE and Nb multi-metal potentiality of Amba Dongar carbonatite complex, Chhota Udepur district, Gujarat. Pp. 4344 in: International Seminar Carbonatites-Alkaline Rocks and Associated Mineral Deposits (Viladkar, S.G., Duraiswamy, R. and Krishnamurthy, P., editors). Amba Dongar, India.Google Scholar
Nasraoui, M. and Bilal, E. (2000) Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): a geochemical record of different alteration stages. Journal of Asian Earth Sciences, 18, 237251.CrossRefGoogle Scholar
Nasraoui, M., Bilal, E. and Gibert, R. (1999) Fresh and weathered pyrochlore studies by Fourier transform infrared spectroscopy coupled with thermal analysis. Mineralogical Magazine, 63, 567578.CrossRefGoogle Scholar
Nickel, E.H. (1956) Niocalite – a new calcium niobium silicate mineral. American Mineralogist, 41, 785786.Google Scholar
Palmer, D.A.S. and Williams-Jones, A.E. (1996) Genesis of the carbonatite-hosted fluorite deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes and whole rock-mineral geochemistry. Economic Geology, 91, 934950.CrossRefGoogle Scholar
Randive, K. and Meshram, T. (2020) An overview of the carbonatites from the Indian Subcontinent. Open Geosciences, 12, 85116.CrossRefGoogle Scholar
Ray, J.S., Trivedi, J.R. and Dayal, A.M. (2000) Strontium isotope systematics of Amba Dongar and Sung Valley carbonatite-alkaline complexes, India: evidence for liquid immiscibility, crustal contamination and long-lived Rb/Sr enriched mantle sources. Journal of Asian Earth Sciences, 18, 585594.CrossRefGoogle Scholar
Sadiq, M., Ranjith, A.M. and Umrao, R.K. (2014) REE mineralization carbonatites from Sung Valley ultramafic-alkaline-carbonatite complex, Meghalaya, India. Open Geosciences, 6, 457475.CrossRefGoogle Scholar
Simonetti, A. and Bell, K. (1995) Nd, Pb, and Sr isotope systematics of fluorite at the Amba Dongar carbonatite complex, India: evidence for hydrothermal and crustal fluid mixing. Economic Geology, 90, 20182027.CrossRefGoogle Scholar
Simonetti, A., Bell, K. and Viladkar, S.G. (1995) Isotopic data from the Amba Dongar carbonatite complex, west-central India: evidence for an enriched mantle source. Chemical Geology, 122, 185198.CrossRefGoogle Scholar
Srivastava, R.K. (1997) Petrology, geochemistry and genesis of rift-related carbonatites of Ambadungar, India. Mineralogy and Petrology, 61, 4766.CrossRefGoogle Scholar
Subbotin, V.V. and Subbotina, G.F. (2000) Minerals of the pyrochlore group in phoscorites and carbonatites of the Kola Peninsula. Proceedings of the Murmansk State Technical University, 3, 273284.Google Scholar
Viladkar, S.G. (1981) The carbonatites of Amba Dongar, Gujarat, India. Bulletin of the Geological Society of Finland, 53, 1728.CrossRefGoogle Scholar
Viladkar, S.G. (1984) Alkaline rocks associated with the carbonatites of Amba Dongar, Chhota Udaipur, Gujarat, India. Indian Mineralogist, Sukheswala Volume, 130135.Google Scholar
Viladkar, S.G. (1996) Geology of the carbonatite-alkalic diatreme of Amba Dongar, Gujarat. Pp. 174 in International Carbonatite Workshop. Ahmedabad. GMDC Science and Research Centre, India.Google Scholar
Viladkar, S.G. (1998) Carbonatite occurrences in Rajasthan, India. Petrology, 6, 272283.Google Scholar
Viladkar, S.G. (2000) Phlogopite as an indicator of magmatic differentiation in the Amba Dongar carbonatite, Gujarat, India. Neues Jahrbuch für Mineralogie – Monatshefte, 7, 302314.Google Scholar
Viladkar, S.G. (2012) Evolution of calciocarbonatite magma: evidence from the sövite and alvikite association in the Amba Dongar Complex. Pp. 485500 in Geochemistry – Earth's System Processes (Panagiotaras, D., editor). London, https://doi.org/10.5772/32460Google Scholar
Viladkar, S.G. (2015) Mineralogy and geochemistry of fenitized nephelinites of the Amba Dongar complex, Gujarat. Journal of the Geological Society of India, 85, 8797.CrossRefGoogle Scholar
Viladkar, S.G. (2017) Pyroxene-sövite in Amba Dongar carbonatite-alkalic complex, Gujarat. Journal of the Geological Society of India, 90, 591594.10.1007/s12594-017-0756-yCrossRefGoogle Scholar
Viladkar, S.G. (2018) Ferrocarbonatites in the Amba Dongar diatreme, Gujarat, India. Journal of the Geological Society of India, 92, 141144.CrossRefGoogle Scholar
Viladkar, S.G. and Bismayer, U. (2010) Compositional variation in pyrochlores of Amba Dongar carbonatite complex, Gujarat. Journal of the Geological Society of India, 75, 495502.CrossRefGoogle Scholar
Viladkar, S.G. and Bismayer, U. (2014) U-rich pyrochlore from Sevathur carbonatites, Tamil Nadu. Journal of the Geological Society of India, 83, 175182.CrossRefGoogle Scholar
Viladkar, S.G. and Dulski, P. (1986) Rare earth element abundances in carbonatites, alkaline rocks and fenites of the Amba Dongar complex, Gujarat, India. Neues Jahrbuch für Mineralogie – Monatshefte, 1, 3748.Google Scholar
Viladkar, S.G. and Ghose, I. (2002) U-rich pyrochlore in carbonatite of Newania, Rajasthan. Neues Jahrbuch für Mineralogie – Monatshefte, 3, 97106.CrossRefGoogle Scholar
Viladkar, S.G. and Schidlowski, M. (2000) Carbon and oxygen isotope geochemistry of the Amba Dongar carbonatite complex, Gujarat, India. Gondwana Research, 3(3), 415424.CrossRefGoogle Scholar
Viladkar, S.G. and Wimmenauer, W. (1986) Mineralogy and geochemistry of the Newania carbonatite-fenite complex, Rajasthan, India. Neues Jahrbuch für Mineralogie Abhandlungen, 156, 121.Google Scholar
Viladkar, S.G. and Wimmenauer, W. (1992) Geochemical and petrological studies on the Amba Dongar carbonatites (Gujarat, India). Chemie der Erde, 52, 277291.Google Scholar
Viladkar, S.G., Bismayer, U. and Zietlow, P. (2017) Metamict U-rich pyrochlore of Newania carbonatite, Udaipur, Rajasthan. Journal Geological Society of India, 89, 133138.CrossRefGoogle Scholar
Vladykin, N.V., Drits, V.А., Kovalenko, V.I., Dorfman, М.D., Malov, V.S. and Gorshkov, А.I. (1985) The new niobium silicate – mongolite Ca4Nb6[Si5O20]O4(OH10) nH2O. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 114, 374377.Google Scholar
Voloshin, A.V., Pakhomovsky, Ya.A., Pusharovsky, D.Yu., Nadezhina, T.N., Bakhchisaraitsev, A.Yu. and Kobyashev, Yu.S. (1989) Strontian pyrochlore: composition and crystal structure. New Data of Mineral, 36, 1224.Google Scholar
Williams-Jones, A.E. and Palmer, D.A.S. (2002) The evolution of aqueous-carbonic fluids in the Amba Dongar carbonatite, India: implications for fenitisation. Chemical Geology, 185, 283301.CrossRefGoogle Scholar
Zaitsev, A.N., Williams, C.T., Wall, F. and Zolotarev, A.A. (2012) Evolution of chemical composition of pyrochlore group minerals from phoscorites and carbonatites of the Khibina alkaline massif. Geology of Ore Deposits, 54, 503515.10.1134/S1075701512070094CrossRefGoogle Scholar
Zaitsev, A.N., Spratt, J., Shtukenberg, A.G., Zolotarev, A.A., Britvin, S.N., Petrov, S.V., Kuptsova, A.V. and Antonov, A.V. (2021) Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania. Mineralogical Magazine, 85, https://doi.org/10.1180/mgm.2020.101Google Scholar
Zurevinski, S.E. and Mitchell, R.H. (2004) Extreme composition variation in pyrochlore group minerals at the Oka Carbonatite Complex, Québec: evidence of magma mixing? The Canadian Mineralogist, 42, 11591168.CrossRefGoogle Scholar