Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T01:55:32.470Z Has data issue: false hasContentIssue false

Evolution of the Miscibility Gap Between Muscovite and Biotite Solid Solutions with Increasing Lithium Content: An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600°C, 2 kbar PH2O: Comparison with Natural Lithium Micas

Published online by Cambridge University Press:  05 July 2018

Gilles Monier
Affiliation:
Laboratoire de Pétrologie, Université d'Orléans, 45046 Orléans Cedex, France
Jean-Louis Robert
Affiliation:
Centre de Recherche sur la Synthèse et la Chimie des Minéraux, G.I.S. C.N.R.S.-B.R.G.M, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France

Abstract

This paper presents the results of an experimental study of the miscibility gap between trioctahedral and dioctahedral micas in the system K2O Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600°C under 2 kbar PH2O. The existence of this miscibility gap is known from previous experimental studies. The gap is large in the lithium-free system; its width reduces progressively with increasing Li content; for sufficient Li contents (Li > 0.6 atom per formula unit, based on 11 oxygens), a single Li-mica phase is obtained, intermediate between trioctahedral and dioctahedral micas. Any bulk composition located inside the miscibility gap gives an assemblage of two micas, one of the biotite-type and one of the muscovite-type. All the compositions located outside the gap, and, in particular, those belonging to the joins phlogopite-trilithionite and muscovite-zinnwaldite (or its magnesian equivalent) give a single mica phase, provided that the fluorine content is sufficient. The ratio Li/F ≈ 1 is a convenient suitable value. The types of micas and the evolutions of their compositions are well characterized by their interplanar distance d060. These experimental results allow the interpretation of most compositions of naturally occurring lithium micas, in the range 0 ⩽ Li ⩽ 1 a./f.u. Natural micas of biotite-type and muscovite-type are located on both sides of the miscibility gap and their compositions get closer with increasing Li content.

Type
Silicate mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1984) In The Micas(S. W. Bailey, ed.) Reviews in Mineralogy13. Mineral soc. Am., 1-2.Google Scholar
Basutcu, M., Barrandon, J.-N., Volfinger, M., and Robert, J.-L. (1983) Chem. Geol., 40, 353 9.CrossRefGoogle Scholar
Cerny, P, and Burt, D.M. (1984) In The Micas(S. W. Bailey, ed.) Reviews in Mineralogy13. Mineral Soc. Am., 257-97.Google Scholar
Deer, W.A., Howie, R.A., and Zussman, J. (1962) Rock Forming Minerals 3, Sheet Silicates. Longmans, London.Google Scholar
Foster, M.D. (1960) U.S. Géol. Surv. Prof. Paper354-E, 115-46.Google Scholar
Friedrich, M. (1984) Geol. Géochim. Uranium,Mém. Nancy, France, 5, 361 pp.Google Scholar
Gauthier, J.-C. (1974) Sci. de la Terre, 19, 119-51.Google Scholar
Hamilton, D.L., and Henderson, C.M.B. (1968) Mineral. Mag, 36, 832-8.Google Scholar
Heinrich, E.W. (1967) Am. Minera, 52, 1110-21.Google Scholar
Monier, G. (1980) These de 3e cycle, Univ. Clermont II, France, 288 pp.Google Scholar
Monier, G. (1985) These d'Etat, Univ. Orléans, 299 pp.Google Scholar
Monier, G. and Robert, J.-L. (1986a) Mineral. Mag, 50, 257-66.CrossRefGoogle Scholar
Monier, G. (1986i) Neues Jahrb. Mineral. Abh, 153, 147. 61.Google Scholar
Munoz, J.L. (1968) Am. Mineral, 53, 1490-512.Google Scholar
Munoz, J.L. (1971. Ibid. 56, 2069-87.Google Scholar
Ranchin, G. (1971) Sci. de la Terre, Mem. 19, Nancy, France.Google Scholar
Rieder, M. (1971) Am. Mineral, 56, 256-80.Google Scholar
Huka, M., Kucerova, D., Minarik, L., Obermajer, J., and Povondra, P. (1970) Contrib. Mineral. Petrol, 27, 131-158.Google Scholar
Robert, J.-L. (1976) Chem. Geol, 17, 195-212.CrossRefGoogle Scholar
Robert, J.-L. (1981) Thése d'Etat, Univ. Paris XI, France, 206 pp.Google Scholar
Robert, J.-L.and Maury, R.C. (1979) Contrib. Mineral. Petrol, 68, 117-23.CrossRefGoogle Scholar
Robert, J.-L.and Volfinger, M. (1979) Bull. Mineral, 102, 21-5.Google Scholar