Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T07:32:16.943Z Has data issue: false hasContentIssue false

The Fe-Mn phosphate aplite ‘Silbergrube’ near Waidhaus, Germany: epithermal phosphate mineralization in the Hagendorf-Pleystein pegmatite province

Published online by Cambridge University Press:  05 July 2018

H. G. Dill*
Affiliation:
Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover, Germany
B. Weber
Affiliation:
Bürgermeister-Knorr Str. 8, D-92637 Weiden i.d.OPf., Germany
A. Gerdes
Affiliation:
Frankfurt University, Institute of Geosciences, Petrology and Geochemistry, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
F. Melcher
Affiliation:
Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover, Germany
*
*E-mail: dill@bgr.de

Abstract

The Silbergrube Aplite (SA) in the Hagendorf-Pleystein Pegmatite District, near Waidhaus, Germany, is a mildly peraluminous NW-SE directed leucogranite dyke. It occurs in association with quartz dykes and aplitic metamorphic mobilizates in the NE Bavarian crystalline basement. The SA differs from other aplitic mobilizates in the region in having a less well developed strain-related mineral orientation and in containing only minor amounts of garnet and tourmaline. The aplitic metamorphic mobilizates and the SA are chemically and mmeralogically almost identical and yield the same age of formation of ∼302 Ma (stage I). The age of formation of the Hagendorf pegmatites seemingly post-dates the emplacement of the SA. The SA was emplaced at the boundary between fine-grained biotite granites and metamorphic country rocks within a zone of structural weakness, favouring the formation of disseminated late magmatic to hydrothermal mineralization of Li-bearing Fe-Mn phosphates (stages II and III). Brittle deformation along this zone was conducive to the faultbound Fe-Mn-Ca phosphates. Mineral telescoping is evident from the presence of Fe2+, Fe3+ and Mn2+ phosphates in fissures and vugs in a texturally highly variable host-rock environment (stage IV). This intimate intergrowth of phosphate minerals reflects contrasting physical and chemical conditions prevailing in a near-surface/ shallow epithermal S-deficient phosphate system (stage IV), similar to what is known from Cu-Au epithermal systems. The most recent mineral assemblages that formed under predominantly oxidizing conditions are correlated with the subtropical weathering during the Neogene which resulted in the formation of a peneplain truncating the SA and its country rocks (stage V). The SA is the root zone of the felsic aplitic-pegmatitic mobilizates in this region and is overprinted by an epithermal phosphate system.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abella, P.A., Cordomi, M.C. and Melgarejo Draper, J.C. (1995) Nb—Ta-minerals from the Cap de Creus pegmatite field, eastern Pyrenees: distribution and geochemical trends. Mineralogy and Petrology, 55, 5369.CrossRefGoogle Scholar
Albinson, T., Norman, D.I., Cole, D. and Chomiak, B. (2001) Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. Pp. 132 in: New Mines and Discoveries in Mexico and Central America(Albinson, T. and Nelson, C.E., editors). Society of Economic Geologists, Special Publication No. 8., Littleton, CO, USA.CrossRefGoogle Scholar
Anderson, S.D., Cerny, P., Halden, N.M., Chapman, R. and Uher, P. (1998) The YITT-B pegmatite swarm at Bernic Lake, southeastern Manitoba: a geochemical and paragenetic anomaly. The Canadian Mineralogist, 36, 283301.Google Scholar
Birch, W.D., Pring, A., Self, P.G., Gibbs, R.B., Keck, E., Jensen, M.C. and Foord, E.E. (1996) Meurigite, a new fibrous iron phosphate resembling kidwellite. Mineralogical Magazine, 60, 787793.CrossRefGoogle Scholar
Breiter, K. and Siebel, W. (1995) Granitoids in the Rozvadov pluton Western Bohemia and Oberpfalz. Geologischen Rundschau/International Journal of Earth Sciences, 84, 506519.Google Scholar
Broska, I., Williams, C.T., Uher, P., Konecn, P. and Leichmann, I (2004) The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chemical Geology, 205, 115.CrossRefGoogle Scholar
Carl, C. and Dill, H.G. (1985) Dating of secondary uranium minerals from the NE Bavarian Basement, Germany. Chemical Geology, 52, 295316.Google Scholar
Casten, U., Gotze, H.-J., Plaumann, S. and Soffel, H. C. (1997) Gravity anomalies in the KTB area and their structural interpretation with special regard to the granites of the northern Oberpfalz (Germany). Geologische Rundschau, 86, 14321449.CrossRefGoogle Scholar
Cech, F., Padera, K. and Povondra, P. (1961) Lipscombit z pegmatitu od Otova u Domazlic. Ada Universitatis Carolinae,3, 171—191.Google Scholar
Cerny, P., Stanek, J., Novak, M., Baadsgaard, H., Rieder, M., Ottolini, L., Kovalova, M. and Chapman, R. (1995) Geochemical and structural evolution of micas in the Rozna and Dobra Voda pegmatites, Czech Republic. Mineralogy and Petrology, 55, 177201.CrossRefGoogle Scholar
Cruft, E.F. (1966) Minor elements in igneous and metamorphic apatite. Geochimica et Cosmochimica Ada, 30, 375398.CrossRefGoogle Scholar
Cuney, M. and Raimbault, L. (1991) Variscan rare metal granitoids and associated mineralizations from the North French Massif Central. 25 Years SGA Anniversary Meeting Guide Book, 75 pp.Google Scholar
Delaney, P. IV. (1996) Gemstones of Brazil: Geology and Occurrences. Revista Escola de Minas, Praca Tiradentes 20, Ouro Preto, Minas Gerais, Brazil, 125 pp.Google Scholar
Dill, H.G. (1985a) Genesis and timing of secondary uranium mineralization in Northern Bavaria (Germany, F.R.) with special reference to geomorphology. Uranium, 2, 1—16.Google Scholar
Dill, H.G. (19856) Die Vererzung am Westrand der Bohmischen Masse. Metallogenese in einer ensia-lischen Orogenzone. Geologisches Jahrbuch, D73, 3461.Google Scholar
Dill, H.G., Gerdes, A. and Weber, B. (2007a) Cu-Fe-U phosphate mineralization of the Hagendorf-Pleystein pegmatite province, Germany: With special reference to laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of iron-cored torbernite. Mineralogical Magazine, 71, 371387.CrossRefGoogle Scholar
Dill, H.G., Melcher, F., Fuessl, M. and Weber, B. (20076) The origin of rutile-ilmenite aggregates ('nigrine’) in alluvial-fluvial placers of the Hagendorf pegmatite province, NE Bavaria, Germany. Mineralogy and Petrology, 89, 133158.CrossRefGoogle Scholar
Ercit, T.S. (2005) REE-enriched granitic pegmatites. Pp. 175199 in: Rare-Element Geochemistry and Mineral Deposits(Linnen, R.L. and Samson, I.M., editors.). Geological Association of Canada, Short Course Notes 17.Google Scholar
Falster, A., Simmons, W. and Moore, P. (1988) Fillowite, lithiophilite, heterosite/purpurite, and alluadite-varulite group minerals from a pegmatite in Florence County, Wisconsin. Rocks and Minerals, 63, 455.Google Scholar
Forster, A. (1965) Erlauterungen zur Geologischen Karte von Bay em 1:25000 Blatt. Vohenstrauβ/ Frankenreuth, GLA Munich, Germany, 174 pp.Google Scholar
Forster, A., Strunz, H. and Tennyson, Ch. (1967) Die Pegmatite des Oberpfalzer Waldes, insbesondere der Pegmatit von Hagendorf-Siid. Aufschlufi, 16, 137198.Google Scholar
Forster, A. and Kummer, R. (1974) The pegmatites in the area of Pleystein-Hagendorf/North Eastern Bavaria. Fortschritte Mineralogie, 52, 8999.Google Scholar
Fransolet, A.-M. (1980) The eosphorite-childrenite series associated with the Li-Mn-Fe phosphate minerals from the Buranga pegmatite, Rwanda. Mineralogial Magazine, 43, 10151023.CrossRefGoogle Scholar
Fransolet, A.-M. (2007) Phosphate associations in the granitic pegmatites: the relevant significance of these accessory minerals. Granitic Pegmatites: The State of the Art — International Symposium. 06th — 12th May 2007, Porto, Portugal.Google Scholar
Fransolet, A.-M., Keller, P. and Fontan, F. (1983) Preliminary results of the investigation of the phosphate minerals from the Tsaobismund pegmatite, Namibia. Fortschritte der Mineralogie, 61, 6566.Google Scholar
Fryda, J. and Breiter, K. (1995) Alkali feldspar as a main phosphorus reservoir in rare metal granites: three examples from the Bohemian Massif (Czech Republic). Terra Nova, 7, 315320.CrossRefGoogle Scholar
Gerdes, A. and Zeh, A. (2006) Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters, 249, 4762.CrossRefGoogle Scholar
Gerdes, A. and Zeh, A. (2008) Zircon formation versus zircon alteration — New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses of Archean zircons from the Limpopo Belt. Chemical Geology, doi 10.1016/j.chemgeo.2008.03.005.Google Scholar
Hedenquist, J. W., Arribas, A. Jr., and Gonzalez-Urien, E. (2000) Exploration for epithermal gold deposits. Reviews in Economic Geology, 13, 245277.Google Scholar
Horstwood, M.S.A., Foster, G.L., Parrish, R.R., Noble, S.R. and Nowell, G.M. (2003) Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 18, 837846.CrossRefGoogle Scholar
Jackson, S.E., Pearson, N.J., Griffin, W.L. and Belousova, E.A. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211, 4769.CrossRefGoogle Scholar
Janousek, V., Gerdes, A., Vrana, S., Finger, F., Erban, V., Friedl, G. and Braithwaite, C. J. R. (2006) Low-pressure Granulites of the Lisov Massif, Southern Bohemia: Visean Metamorphism of Late Devonian Plutonic Arc Rocks. Journal of Petrology, 47, 705744.CrossRefGoogle Scholar
Keller, P. (1991) The occurrence of Li-Fe-Mn phosphate minerals in granitic pegmatites of Namibia. Communications of the Geological Survey of Namibia, 7, 2134.Google Scholar
Keller, P., Fransolet, A.M. and Fontan, F. (1994) Triphylite, lithiophyllite and triplite in granitic pegmatites: Their textures and genetic relationships. Neues Jahrbuch fur Mineralogie Abhandlungen, 168, 127145.Google Scholar
Lahti, S.I. (1981) On the granitic pegmatites of the Erajarvi area in Orivesi, southern Finland. Geological Survey of Finland Bulletin, 314, 582.Google Scholar
Locock, A.J. and Burns, P.C. (2003) The crystal structure of synthetic autunite, Ca[(UO2) (PO4)]2(H2O). American Mineralogist, 88, 240244.CrossRefGoogle Scholar
Ludwig, KR. (2001) Users Manual for Isoplot/Ex rev. 2.49: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, la, 156.Google Scholar
Matthes, S. (1961) Ergebnisse zur Granatsynthese und ihre Beziehungen zur natiirlichen Granatbildung innerhalb der Pyralspit-Gruppe. Geochimica et Cosmochimica Ada, 23, 233246.CrossRefGoogle Scholar
Meier, F.M., Kolb, J., Skallaris, G.A. and Gerdes, A. (2006) New ages from the Mauritanides: Recognition of Archean IOCG mineralization at Guelb Moghrein, Mauritania. Terra Nova, 18, 345—352.Google Scholar
Melcher, F., Sitnikova, M.A., Graupner, T., Martin, N., Oberthiir, T., Henjes-Kunst, F., Gabler, E., Gerdes, A., Bratz, H., Davis, D.W. and Dewaele, S. (2008) Fingerprinting of conflict minerals: columbite- tantalite (“coltan“) ores. Society of Geology Applied to Mineral Deposits News, 22, 114.Google Scholar
Mindat, (2008) Silbergrube, Waidhaus, Vohenstrauβ, Oberpfalzer Wald, Upper Palatinate, Bavaria, Germany. http://www.mindat.org/loc-13086.html Google Scholar
Mücke, A. (1981) The parageneses of the phosphate minerals of the Hagendorf pegmatite (A general view). Chemie der Erde/Geochemistry, 40, 217234.Google Scholar
Mücke, A. (1988) Lehnerit, Mn[UO2|PO4]2.8H2O, ein neues Mineral aus dem Pegmatit von Hagendorf Oberpfalz. Aufschluss, 39, 209217.Google Scholar
Mücke, A. (2000) Die Erzmineralien und deren Paragenesen im Pegmatit von Hagendorf-Siid, Oberpfalz. Aufschluss, 51, 1124.Google Scholar
MNovak, J.K, Pivec, E. and Stemprok, M. (1996) Hydrated iron phosphates in muscovite-albite granite from Waidhaus (Oberpfalz, Germany). Journal of the Czech Geological Society, 41, 201207.Google Scholar
Novak, M. and Cerny, P. (2001) Distinctive compositional trends in columbite-tantalite from two segments of the lepidolite pegmatite at Rozna, western Moravia, Czech Republic. Journal of the Czech Geological Society, 46, 18.Google Scholar
Nriagu, J.O. (1972) Stability of vivianite and ion-pair formation in the system (Fe3(PO4)3-H3PO4-H2O). Geochimica et Cosmochimica Ada, 36, 459470.CrossRefGoogle Scholar
Nriagu, J.O. and Moore, P.B. (1984) Phosphate Minerals. Springer, Heidelberg, New York, Tokyo, 442 pp.CrossRefGoogle Scholar
Roda Robles, E., Fontan, F., Pesquera Perez, A. and Keller, P. (1998) Chemistry and evolution of Fe-Mn phosphates associated with a rare element pegmatite (Pinilla de Fermoselle, Zamora, Spain). European Journal of Mineralogy, 18, 157167.Google Scholar
Rose, D. (1981) Multi-step emplacement of a pegmatitic vein — Brabant pegmatite, Namibia.. Neues Jahrbuch fur Mineralogie Monatshefte, 355373.Google Scholar
Schlüter, L, Klaska, K.-H., Friese, K. and Adiwidjaja, G. (1999) Kastningite, (Mn,Fe,Mg)Al2(PO4)2(OH)2-8H2O, a new phosphate mineral from Waidhaus, Bavaria, Germany. Neues Jahrbuch fur Mineralogie Monatshefte, 4048.Google Scholar
Schmidt, H. (1955) Verbandsverhaltnisse der Pegmatite des Oberpfalzer und Bayerischer Wald (Hagendorf-Pleystein-Hiihnerkobel). Neues Jahrbuch fur Mineralogie Abhandlungen, 88, 309404.Google Scholar
Scholz, A. (1925) Untersuchungen iiber Mineralfiihrung und Mineralgenese der bayerischen Pegmatite. B ericht fur das J ahr 1924 des Naturwissenschaftlichen Vereins Regensburg e.V., Regensburg, 17, 146.Google Scholar
Sirbescu, M-L.C, Hartwick, E.E. and Student, JJ. (2008) Rapid crystallization of the Animikie Red Ace Pegmatite, Florence county, northeastern Wisconsin: inclusion microthermometry and conductive-cooling modeling. Contributions to Mineralogy and Petrology, 156, 289305.CrossRefGoogle Scholar
Slama, J., Kosler, J., Condon, D.J., Crowley, J.L, Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N. and Whitehouse, MJ. (2008). Plesovice zircon — a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 135.CrossRefGoogle Scholar
Stoffregen, R.E. (1993) Stability relations of jarosite and natroalunite at 100—250°C. Geochimica et Cosmochimica Ada, 58, 903916.CrossRefGoogle Scholar
Stoffregen, R.E. and Alpers, C.N., (1987) Woodhouseite and svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration. The Canadian Mineralogist, 25, 201211.Google Scholar
Stoffregen, R.E., Rye, R.O. and Wasserman, M.D. (1994). Experimental studies of alunite: I 18O and D-H fractionation factors between alunite and water at 250—450°C. Geochimica et Cosmochimica Ada, 58, 903916.CrossRefGoogle Scholar
Strunz, H. (1961) Epitaxie von Uraninit auf Columbit. Aufschluss, 12, 8184.Google Scholar
Strunz, H. (1974) Granites and pegmatites in Eastern Bavaria. Fortschritte Mineralogie, 52, 132.Google Scholar
Strunz, H., Forster, A. and Tennyson, Ch. (1975) Die Pegmatite der nordlichen Oberpfalz. Aufschluss, Sonderband, 26, 117189.Google Scholar
Tollari, N., Toplis, MJ. and Barnes, S.-J. (2006) Predicting phosphate saturation in silicate magmas: An experimental study of the effects of melt composition and temperature. Geochimica et Cosmochimica Ada, 70, 15181536.CrossRefGoogle Scholar
Uebel, PJ. (1975) Platznahme und Genese des Pegmatits von Hagendorf-Siid. Neues Jahrbuch Mineralogie Monatshefte, 318—332.Google Scholar
Uebel, PJ. (1980) Emplacement of dykes and plug like bodies as demonstrated by pegmatites. Neues Jahrbuch Mineralogie Abhandlungen, 138, 207227.Google Scholar
Vieillard, P., Tardy, Y. and Nahon, D. (1979) Stability fields of clays and aluminium phosphates: para-geneses in lateritic weathering of argillaceous phosphatic sediments. American Mineralogist, 64, 626634.Google Scholar
Vochten, R.F., de Grave, E., van Springel, K. and van Haverbeke, L. (1995) Mineralogical and Mossbauer speetroseopie study of some strunzite varieties at the Silbergrube, Waidhaus, Oberpfalz, Germany. Neues Jahrbuch fur Mineralogie Monatshefte, 11 —26.Google Scholar
Wagman, D.D., Evans, W.H., Parker, V.B., Halov, I., Bailey, S.M. and Schumm, R.H. (1971) Selected values of chemical thermodynamic properties. NBS Technical Notes, 270—3, 270—4, 270—5.Google Scholar
Walther, H.W. and Dill, H.G. (1995) Die Bodenschatze Mitteleuropas - Ein Uberblick. Pp. 526542 in: Die Geologie von Mitteleuropa(Walter, R., editor). Schweizerbart, Stuttgart, Germany.Google Scholar
Warry, N.D. and Kramer, J.R. (1976) Some factors affecting the synthesis of cryptocrystalline strengite from an amorphous phosphate complex. The Canadian Mineralogist, 14, 4046.Google Scholar
Weber, K and Vollbrecht, A. (1989) The Crustal structure at the KTB Drill Site, Oberpfalz. Pp. 536 in: The Continental Deep Drilling Program (KTB)(Emmermann, R. and Wohlenberg, J., editors.). Springer, Heidelberg, Germany.CrossRefGoogle Scholar
Wendt, I., Ackermann, H., Carl, C, Kreuzer, H., Miiller, P. and Stettner, G. (1994) Rb/Sr-Gesamtgesteins-und K/Ar-Glimmerdatierungen der Granite von Flossenbiirg und Barnau. Geologisches Jahrbuch. E51, 329.Google Scholar
Williams, J.D.H., Syers, J.K. and Harris, R.F. (1970) Absorption and desorption of inorganic phosphorus in a 0.1 molar NaCl system. Environmental Science Technology, 4, 417519.CrossRefGoogle Scholar
Wise, M.A. (1999) Characterization and classification of NYF-type pegmatites. In: The Eugene E. Foord Memorial Symposium on NYF-type Pegmatites (Denver). The Canadian Mineralogist, 37, 802803.Google Scholar