Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T12:05:57.600Z Has data issue: false hasContentIssue false

Flaggite, Pb4Cu2+4Te6+2(SO4)2O11(OH)2(H2O), a new mineral with stair-step-like HCP layers from Tombstone, Arizona, USA

Published online by Cambridge University Press:  18 April 2022

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Stuart J. Mills
Affiliation:
Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
Aaron J. Celestian
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
Hexiong Yang
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, USA
Brent Thorne
Affiliation:
Independent Researcher, Bountiful, UT 84010, USA
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new mineral flaggite (IMA2021-044), Pb4Cu2+4Te6+2(SO4)2O11(OH)2(H2O), occurs at the Grand Central mine in the Tombstone district, Cochise County, Arizona, USA, in cavities in quartz matrix in association with alunite, backite, cerussite, jarosite and rodalquilarite. Flaggite crystals are lime-green to yellow-green tablets, up to 0.5 mm across. The mineral has a very pale green streak and adamantine lustre. It is brittle with irregular fracture and a Mohs hardness of ~3. It has one excellent cleavage on {010}. The calculated density is 6.137 g cm–3. Optically, the mineral is biaxial (+) with α = 1.95(1), β = 1.96(1), γ = 2.00(1) (white light); 2V = 54(2)°; pleochroism: X green, Y light yellow green, Z nearly colourless; X > Y > Z. The Raman spectrum exhibits bands consistent with TeO6 and SO4. Electron microprobe analysis provided the empirical formula Pb3.88Cu2+3.89Te6+2.08(SO4)2O11(OH)2(H2O) (–0.03 H). Flaggite is triclinic, P1, a = 9.5610(2), b = 9.9755(2), c = 10.4449(3) Å, α = 74.884(1), β = 89.994(1), γ = 78.219(1)°, V = 939.97(4) Å3 and Z = 2. The structure of flaggite (R1 = 0.0342 for 5936 I > 2σI) contains hexagonal-close-packed, stair-step-like layers comprising TeO6 octahedra and Jahn-Teller distorted CuO6 octahedra. The layers in the structure of flaggite are very similar to those in bairdite, timroseite and paratimroseite.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Christy, A.G., Mills, S.J., Kampf, A.R., Housley, R.M., Thorne, B. and Marty, J. (2016a) The relationship between mineral composition, crystal structure and paragenetic sequence: the case of secondary Te mineralization at the Bird Nest drift, Otto Mountain, California, USA. Mineralogical Magazine, 80, 291310.CrossRefGoogle Scholar
Christy, A.G., Mills, S.J. and Kampf, A.R. (2016b) A review of the structural architecture of tellurium oxycompounds. Mineralogical Magazine, 80, 415545.CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O⋅⋅⋅O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Marty, J. and Thorne, B. (2010) Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb2Cu2+5(Te6+O6)2(OH)2, and paratimroseite, Pb2Cu2+4(Te6+O6)2(H2O)2, new minerals with edge-sharing Cu–Te octahedral chains. American Mineralogist, 95, 15601568.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013) Lead–tellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, Pb2Cu2+4Te6+2O10(OH)2(SO4)⋅H2O, a new mineral with thick HCP layers. American Mineralogist, 98, 13151321.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Celestian, A.J., Ma, C., Yang, H. and Thorne, B. (2021a) Flaggite, IMA 2021-044. CNMNC Newsletter 63. Mineralogical Magazine, 85, 910915, https://doi.org/10.1180/mgm.2021.74.Google Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Ma, C. and Thorne, B. (2021b) Tombstoneite, IMA 2021–053. CNMNC Newsletter 63; Mineralogical Magazine, 85, 910915, https://doi.org/10.1180/mgm.2021.74.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Mills, S.J. and Christy, A.G. (2013) Revised values of the bond valence parameters for TeIV–O, TeVI–O and TeIV–Cl. Acta Crystallographica, B69, 145149.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Christy, A.G., Housley, R.M., Rossman, G.R., Reynolds, R.E. and Marty, J. (2014) Bluebellite and mojaveite, two new minerals from the central Mojave Desert, California, USA. Mineralogical Magazine, 78, 13251340.CrossRefGoogle Scholar
Missen, O.P., Ram, R., Mills, S.J., Etschmann, B., Reith, F., Shuster, J., Smith, D.J. and Brugger, J. (2020) Love is in the Earth: a review of tellurium (bio)geochemistry in surface environments. Earth-Science Reviews, 204, 103150.CrossRefGoogle Scholar
Missen, O.P., Etschmann, B., Mills, S.J., Sanyal, S.K., Ram, R., Shuster, J., Rea, M.A.D., Raudsepp, M.J., Fang, X.-Y., Lausberg, E.R., Melchiorre, E., Dodsworth, J., Liu, Y., Wilson, S.A. and Brugger, J. (2022a) Tellurium biogeochemical transformation and cycling in a metalliferous semi-arid environment. Geochimica et Cosmochimica Acta, 321, 265292, https://doi.org/10.1016/j.gca.2021.12.024.CrossRefGoogle Scholar
Missen, O.P., Mills, S.J., Rumsey, M.S., Spratt, J., Najorka, J., Kampf, A.R. and Thorne, B. (2022b) The new mineral tomiolloite, Al12(Te4+O3)5[(SO3)0.5(SO4)0.5](OH)24: a unique microporous tellurite structure. American Mineralogist, 107, https://doi.org/10.2138/am-2022-8368.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Williams, S.A. (1980) The Tombstone district, Cochise County, Arizona. Mineralogical Record, 11, 251256.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 1

Download Kampf et al. supplementary material(File)
File 298 KB
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 2

Download Kampf et al. supplementary material(File)
File 28 KB