Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T06:11:22.113Z Has data issue: false hasContentIssue false

Fluid inclusion and geochemical evidence for fluid mixing in the genesis of Ba-F (Pb-Zn) lodes of the Spanish Central System

Published online by Cambridge University Press:  05 July 2018

F. Tornos
Affiliation:
Instituto Tecnológico Geominero de España, Rios Rosas 23, 28003 Madrid, Spain
C. Casquet
Affiliation:
Facultad de Ciencias Geológicas, Universidad Complutense, 28004 Madrid, Spain
J. Locutura
Affiliation:
Instituto Tecnológico Geominero de España, Rios Rosas 23, 28003 Madrid, Spain
R. Collado
Affiliation:
Facultad de Ciencias Geológicas, Universidad Complutense, 28004 Madrid, Spain

Abstract

Fluid inclusion data and geochemical evidence lead to a genesis of Ba-F (Pb-Zn) lodes of the Spanish Central System as related to fluid mixing of hot (>300 °C), low saline (<0.6 molal), Na-K deep fluids and cool (<100 °C), oxidized, more saline (>2.8 molal), Na-K-Ca-Mg brines of phraeatic origin. Ore formation took place at relative low depth and temperatures (from 270 to 120 °C) in a regime of increasing fO2, (Ca + Mg)/Na ratio and pH of the fluids towards the surface. Such evolution destabilizes the chloride metal complexes, allowing for the precipitation of Zn and Pb carried by the deep solution.

Vertical fluorite-baryte zonation is explained in terms of mineral solubilities. Fluorite deposition in the deeper mineralized zone is related to a slight increase of mCa2+ of the fluid in the lower part of the fluid mixing zone; further increase of mCa2+ and mMg2+ towards the surface promotes fluorite dissolution. Increase of fO2 in the shallow part of the hydrothermal system promotes the oxidation of , resulting in baryte formation.

We propose an ore genesis related to fluid mixing in shallow hydrothermal systems associated with an extension of Permo-Triassic age. Such interpretation is in agreement with the present day ideas for the genesis of many of the Ba-F deposits in the Hercynian Belt of Europe.

Type
Fluid Inclusion Studies
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, P. B. and Skinner, B. J.: (1979) Sulfide Mineral stabilities. In Geochemistry of Hydrothermal Ore Deposits (Barnes, ed.), 2nd edition. Wiley and Sons, New York, 278403.Google Scholar
Blount, C. (1977) Barite solubilities and thermo-dynamic quantities up to 300 °C and 1400 bars. Amer. Mineral, 62, 942-57.Google Scholar
Bottrell, S. H., Yardley, B., and Buckley, F. (1988) A modified crush leaching method for the analysis of fluid inclusion electrolytes. Bull. Mineral., Ill, 279-90.Google Scholar
Bourcier, W. L. and Barnes, H. L. (1987) Ore solution chemistry: VII. Stabilities of chloride and bisulfide complexes of zinc to 350 °C. Econ. Geol, 82, 1839-63.CrossRefGoogle Scholar
Canals, A. and Ayora, C. (1988) Las mineralizaciones filonianas del sector de 1’ Argentera (Cadenas Costero Catalanas): Contexto geologico, estructura, tipologia y condiciones de formacion. Acta Geol. Hisp., 23, 155-70.Google Scholar
Canals, A., Cardellach, E., and Ayora, C. (1988) Genesis del filon Atrevida (Tarragona): Datos de inclusiones fluidas e isotopos de azufre. Bol. Soc. Esp. Min., 11, 135–6.Google Scholar
De Ronde, C. E. J. and Blattner, P. (1988) Hydrothermal alteration, stable isotopes and fluid inclusions of the Golden Cross epithermal Gold-Silver Deposit, Waihi, New Zealand. Econ. Geol, 83, 895917.CrossRefGoogle Scholar
Dill, H. (1988) Geologic setting and age relationship of fluorite-barite mineralization in Southern Germany with special reference to the Late Paleozoic unconformity. Mineral. Deposita, 23, 1623.CrossRefGoogle Scholar
Fehn, U. (1985) Postmagmatic convection related to HHP in granites of SW England. In HHP granites, hydrothermal circulation and ore genesis, Inst. Min. Met., London, 99112.Google Scholar
Fournier, R. O. (1985a) The behaviour of silica in hydrothermal solutions. Rev. Econ. Geoi, 2, 4563.Google Scholar
Fournier, R. O. (1985b) Carbonate transport and deposition in the epithermal environment. Ibid., 2, 6472.Google Scholar
Giggenbach, W. F. (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta, 52, 2749-65.CrossRefGoogle Scholar
Hedenquist, J. W. and Henley, R. W. (1985) The importance of CO2 freezing point measurement of fluid inclusions: evidence from active geothermal systems and implications for epithermal ore deposition. Econ. GeoL, 80, 1379–406.CrossRefGoogle Scholar
Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci., 267, 729804.CrossRefGoogle Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Ibid., 278-A, 229 pp.Google Scholar
Helgeson, H. C., Kirkham, D. H., and Flowers, G. C. (1981) Theoretical prediction of the thermodinamic behavior of aqueous electrolytes at high pressure and temperature: IV: Calculation of activity coefficients, osmotic coefficients and apparent molal properties to 5 kb and 600°C. Ibid., 281, 1241–516.Google Scholar
Henley, R. W., Truesdell, A. H., and Barton, P. B. (1984) Fluid-mineral equilibria in hydrothermal systems. Rev. Econ. GeoL, I, 265 pp.Google Scholar
Ibarrola, E., Villaseca, C., Vialette, Y., Fuster, J. M., Navidad, M., Peinado, M., and Casquet, C. (1988) Dating of Hercynian granites in the Sierra de Guadarrama (Spanish Central System). In Geologia de los granitoides y rocas asociadas del Macizo Hespérico, ed. Rueda. Madrid, 377-83.Google Scholar
Lhegu, J., Jebrak, M., Touray, J. C, and Ziserman, A. (1982) Les filons de fluorite et de barytine du Massif Central francais. Bull. BRGM., (2), II-2, 165-77.Google Scholar
Locutura, J. and Tornos, F. (1985) Consideraciones sobre la metalogenia del sector medio del Sistema Central Espaflol. Rev. R. Acad. Ciencias Fis. Exac. Nat., 59, 589623.Google Scholar
Locutura, J. and Tornos, F. (1987) Aspectos genéticos de las mineraliza-ciones de F (Ba-Pb) de área de Colmenar de Arroyo (Sistema Central Español). Bol. GeoL Min., 98, 680-94.Google Scholar
Locutura, J. , Tornos, F. Florido, P., and Baeza, L. (1990) Metallogeny of Spanish Ossa Morena Zone. In Premesozoic evolution of Iberia, Springer Verlag, 321-30.Google Scholar
Martinez, J., Oyarzun, R., Mayor, N., Lunar, R., and Vindel, E. (1988) Mineralizaciones de la Sierra de Guadarrama. Aplicacion del modelo epitermal. Bol. Soc. Esp. Min., 11, 2734.Google Scholar
Mayor, N., Lunar, R., and Oyarzun, R. (1988) Mineralizaciones filonianas de barita-fluorita-cuarzo-(metales de base-Ag) del sector centro-occidental del Sistema Central Espanol). Ibid., 11, 137–9.Google Scholar
McKibben, M. A., Andes, J. P., and Williams, A. E. (1988) Active ore formation at a brine interface in metamorphosed deltaic lacustrine sediments: The Salton Sea geothermal system, California. Econ. GeoL, 83, 511-23.CrossRefGoogle Scholar
Melgarejo, J. C. and Ayora, C. (1985) La Mina Atrevida (Ba, F, Pb, Zn, As, Ni, Ag), Cadenas Costero Catalanas: Un ejemplo de filón triásico de zocalo-cobertera. Rev. Inv. GeoL, 40, 87102.Google Scholar
Nicholls, J. and Crawford, M. L. (1985) FORTRAN programs for calculation of fluid properties from the microthermometric data on fluid inclusions. Computers Geosci., 11, 619-45.CrossRefGoogle Scholar
Ortega, L., Vindel, E., and Lunar, R. (1988) Estudio de los filones de baritina intragraniticos del sector Cenicientos-Cadalso de los Vidrios (Sistema Central). Bol. Soc. Esp. Min., 11, 8999.Google Scholar
Patterson, D. J., Ohmoto, H., and Solomon, M. (1981) Geological setting and genesis of cassiterite-sulfide mineralization at Renison Bell, Western Tasmania. Econ. GeoL, 76, 393438.CrossRefGoogle Scholar
Reed, M. H. and Spycher, N. F. (1985) Boiling, cooling and oxidation in epithermal systems: A numerical model approach. Rev. Econ. GeoL, 2, 249-71.Google Scholar
Richardson, C. K. and Holland, H. D. (1979) The solubility of fluorine in hydrothermal solutions, an experimental study. Geochim. Cosmochim. Acta, 43, 1313-25.CrossRefGoogle Scholar
Roedder, E. (1984) Fluid inclusions. Rev. Mineralogy, 12. Miner. Soc. Amer. 644 pp.Google Scholar
Routhier, P. (1983) Where are the metals for the future? BRGM, Paris, 397 pp.Google Scholar
Seward, T. M. and Barnes, H. L. (1987) Ore mineral solubility, transport and deposition, NATO ASI, Geochemistry of hydrothermal ore processes, Salamanca (in press).Google Scholar
Thibicroz, J. (1982) Typologie des gites de fluorine. Repartition des gisements en France et dans les regions voisines. Bull. BRGM (2), II-4, 437-99.Google Scholar
Tornos, F. (1990) Evolucion petrologica y metalogenica de los skarns del Sistema Central Espanol. Doctoral Thesis. Universidad Complutense de Madrid, 487 pp.Google Scholar
Tritlla, J. and Cardellach, E. (1988) Filones de Pb-Ba en el paleozoico del area de Martorell (Barcelona). Bol. Soc. Esp. Min., 11, 167-72.Google Scholar
Ubanell, A. G. (1981) Caracten'sticas principales de la fracturacion tardihercinica en un segmento del Sistema Central Espanol. Cuad. GeoL Iber., 7, 541605.Google Scholar
Ulrich, M. R. and Bodnar, R. J. (1988) Systematics of stretching of fluid inclusions II. Barite at 1 atm confining pressure. Econ. Geol., 83, 137-46.CrossRefGoogle Scholar
Vindel, E. (1980) Estudio mineralogico y metalogenico de las mineralizaciones de la Sierra de Guadarrama. Doctoral Thesis. Universidad Complutense de Madrid, 249 pp.Google Scholar
Walshe, J. L. (1986) A six component chlorite solid solution model and the conditions of chlorite forma-tion in hydrothermal and geothermal systems. Econ. GeoL, 81, 681703.CrossRefGoogle Scholar