Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T14:48:21.615Z Has data issue: false hasContentIssue false

Fluid migration during contact metamorphism: the use of oriented fluid inclusion trails for a time/space reconstruction

Published online by Cambridge University Press:  05 July 2018

M. Cathelineau
Affiliation:
CREGU and CG CNRS-CREGU, BP 23, 54500, Vandoeuvre-les-Nancy, France
M. Lespinasse
Affiliation:
CREGU and CG CNRS-CREGU, BP 23, 54500, Vandoeuvre-les-Nancy, France Laboratoire d'étude des systèmes hydrothermaux, Nancy 1 University, Vandoeuvre-les-Nancy, France
A. M. Bastoul
Affiliation:
CREGU and CG CNRS-CREGU, BP 23, 54500, Vandoeuvre-les-Nancy, France Université de Marakech, Morroco
C. Bernard
Affiliation:
CREGU and CG CNRS-CREGU, BP 23, 54500, Vandoeuvre-les-Nancy, France Laboratoire d'étude des systèmes hydrothermaux, Nancy 1 University, Vandoeuvre-les-Nancy, France
J. Leroy
Affiliation:
Laboratoire d'étude des systèmes hydrothermaux, Nancy 1 University, Vandoeuvre-les-Nancy, France

Abstract

Microthermometric characteristics of metamorphic to hydrothermal fluids and microfracturing were studied in a contact zone between metamorphic series and peraluminous granites, located in the southern part of the Mont Lozère pluton (Massif Central, France). Four major stages of fluid production or migration have been recognized: (1) N2-CH4 (±CO2)-rich fluids related to the metamorphism of the C-bearing shales, occurring as fluid inclusion along the quartz grain boundaries; (2) CO2-CH4-H2O vapours or liquids, with homogenization temperatures of 400 ± 20 and 350 ± 50°C respectively, related to the first hydrothermal stage produced by the late peraluminuous intrusions; (3) aqueous fluids having low salinities and Th in the range 150–330°C; (4) low-temperature aqueous fluids.

It is shown that the percolation of hydrothermal fluids occurs through a dense set of microfissures on a microscopic scale. The different stages of fluid percolation have been investigated by relating the deformational events to the observed fracturing. The nature of the hydrothermal fluid has been deduced by studying the trails of fluid inclusions. Analysis of the relationships of the fluid inclusion trails (F.I.T.) with structures associated with plastic deformation show that their propagation is independent of the intracrystalline anisotropies. Combined studies of their orientation in space and their microthermometric characteristics show that: (1) according to the direction, several generations of fluids are distinguished within each sample on the basis of their physical-chemical characteristics; they correspond to different stages of the hydrothermal activity and to different directions of micro-crack opening; (2) in bulk isotropic media (granite), fluid inclusion trails are essentially mode I cracks which can be used as excellent markers of paleostress fields; however, in bulk anisotropic media (quartz lenses in mica schists) the migration directions of the fluids are mostly dependent on the local reorientations of the stress fields.

The study of the contact zone between granites and a metamorphic series submitted to local abnormal heat flows shows that fluid characteristics are significantly different in the two environments. Migration of carbonic fluids from mica schists towards granites occurred but is relatively limited, whilst aqueous fluids mixed in variable amounts with carbonic fluids in the metamorphic zone.

Type
Magmatic/metamorphic environment
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastoul, A. (1983) Unpub. thesis Nancy I Univ., 165 PP.Google Scholar
Bastoul, A., Cathelineau, M., and Cuney, M. (1988) 12 RST, Lille, Soc. Géol. Fr. Paris, 10.Google Scholar
Bernard, Ch. (1988) DEA Nancy I Univ., 41 pp.Google Scholar
Bott, M. H. P. (1959) Geol. Mag. 96, 109-17.CrossRefGoogle Scholar
Brace, W. F. and Bombolakis, E. G. (1963) J. Geophys. Res. 68, 370-13.Google Scholar
Cathelineau, M. (1983) C.R. Acad. Sci. Paris, 296, 985-8.Google Scholar
Cathelineau, M., Marignac, C. and Puxxedu, M. (1986) 5th Int. Symposium on Water Rock Interaction. Reykjavik (Islande), 100-3.Google Scholar
Dubessy, J. (1984) Bull. Mineral. 107, 157-68.Google Scholar
Dubessy, J. (1986) Thèse d'état Univ. Nancy I, 198 pp.Google Scholar
Dubessy, J., Ramboz, C., Nguyen Trun, C., Cathelineau, M., Charoy, B., Cuney, M., Leroy, J., Poty, B. and Weisbrod, A. (1987) Bull. Mineral. 110, 261-81.Google Scholar
Dubessy, J., Poty, B. and Ramboz, C. (1989) Europ. J. Mineral. 1, 517-34.CrossRefGoogle Scholar
Etchecopar, A. (1984) Unpub. thesis, U.S.T.L. Montpellier, 260 pp.Google Scholar
Etchecopar, A., Vasseur, G. and Daignières, M. (1981) J. Struct. Geol. 3, 51-65CrossRefGoogle Scholar
Friedman, M. and Logan, J. M. (1970) Bull. Geol. Soc. Amer. 81, 3417-20.CrossRefGoogle Scholar
Goldschmidt, V. M. (1911) Die Kontaktmetamorphose im Kristiangebiet. Vidensk. Shriftre. I. Mat. Naturv. K., no. 11.Google Scholar
Hicks, H. (1884) J. Geol. Soc. London, 40, 187-99.CrossRefGoogle Scholar
Hollister, L. S. (1969) Bull. geol. Soc. Amer. 80, 2465-94.CrossRefGoogle Scholar
Hollister, L. S. and Crawford, M. L. (1981) Mineral. Assoc. Canada Short Course Handbook, 6, 304 pp.Google Scholar
Jacobs, G. K. and Kerrick, D. M. (1981) Geochim. Cosmochim. Acta, 45, 607-14.CrossRefGoogle Scholar
Kerrick, D. M. and Jacobs, G. K. (1981) Amer. J. Sci. 281, 735-67.CrossRefGoogle Scholar
Kowallis, B. J., Wang, H. F. and Jang, B. (1987) Tectonophys. 135, 297-306.CrossRefGoogle Scholar
Krantz, R. L. (I979a) Int. J. Rock. Mech. Min. Sci. 16, 23-35.CrossRefGoogle Scholar
Krantz, R. L. (1979b) Ibid. 16, 37-47.Google Scholar
Krantz, R. L. (1983) Tectonophys. 100, 44-80.Google Scholar
Laubach, S. E. (1989) J. Struct. Geol. 11, 603-11.CrossRefGoogle Scholar
Lespinasse, M. (1981) D.E.A.U.S.T.L. Montpellier, 69 pp.Google Scholar
Lespinasse, M. (1984) Mem. GeoL Geochim. Uranium, 8, 200 pp.Google Scholar
Lespinasse, M. and Pécher, A. (1986) J. Struct. Geol. 8, 16-80.CrossRefGoogle Scholar
Lespinasse, M. and Cathelineau, M. (1990) Tectnophys. (in press).Google Scholar
Peng, S. and Johnson, A. M. (1972) Int. J. Rock. Mech. Min. Sci. 9, 37-82.CrossRefGoogle Scholar
Pécher, A., Lespinasse, M. and Leroy, J. (1985) Lithos, 18, 22-37.CrossRefGoogle Scholar
Potter, R. W. (1977) J. Res. U.S. GeoL Surv. 6, 245-57.Google Scholar
Potter, R. W., Clynne, M. A. and Brown, D. L. (1978) Econ. Geol. 73, 284-5.CrossRefGoogle Scholar
Poty, B., Leroy, J. and Jachimowicz, L. (1976) Bull. Soc. Fr. Mineral. Cristallogr. 99, 182-6.Google Scholar
Ramboz, C., Schnapper, D. and Dubessy, J. (1985) Geochim. Cosmochim. Acta, 49, 205-19.CrossRefGoogle Scholar
Raynaud, S. (1979) Unpub. thesis U.S.T.L. Montpellier, 82 pp.Google Scholar
Ren, X., Kowallis, B. J. and Best, G. M. (1989) Geology, 17, 487-90.2.3.CO;2>CrossRefGoogle Scholar
Roedder, E. (1962) Econ. Geol. 57, 1045-61.CrossRefGoogle Scholar
Roedder, E. (1972) U.S. Geol. Surv., Prof Paper, 440, JJ, 164 PP.Google Scholar
Roedder, E. (1984) Reviews in Mineralogy, 12, 644 pp. Min. Soc. America.Google Scholar
Seki, Y. (1961) Jap. J. Geol. Geog. 32, 55-78.Google Scholar
Simmons, G. and Richter, D. (1976) Microcracks in rocks. In The Physics and Chemistry of Rocks and Minerals (Strens, R. G. J., ed.). Wiley, New York, 105-37.Google Scholar
Tapponier, P. and Brace, W. F. (1976) Int. J. Rock. Mech. Min. Sci. 13, 103-12.CrossRefGoogle Scholar
Tilley, C. E. (1924) Q.J. Geol. Soc. Lond. 80, 22-70.CrossRefGoogle Scholar
Tourte, J. (1977) Thermodynamics in Geology (Fraser, D. G., ed.) D. Reidel Publ. Co., Dordrecht, The Netherlands, 203-27.CrossRefGoogle Scholar
Tuttle, O. F. (1949) J. Geology, 54, 4, 331-56.Google Scholar
Van Hise, C. R. (1890) Geol. Soc. Am. Bull. 1, 216-8.CrossRefGoogle Scholar
Vergely, R. and Blanc, J. M. (1981) C.R. Somm. Soc. Géol. Fr. 167-70.Google Scholar
Virlogeux, D. (1984) Unpub. report C.F.M. Lozère, 84/06, 37.Google Scholar
Wise, D. U. (1964) Geol. Soc. Am. Bull. 75, 28-306.CrossRefGoogle Scholar