Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T07:29:32.822Z Has data issue: false hasContentIssue false

The formation of ferromanganese nodules in the southwest Indian Ocean; an abiotic process

Published online by Cambridge University Press:  05 July 2018

B. E. Van Dongen*
Affiliation:
School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK
N. J. Ashton
Affiliation:
School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK
R. A. D. Pattrick
Affiliation:
School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK

Abstract

Ferromanganese nodules have been recognized widely as potentially important resources for strategic metals. However it remains unclear if the formation of these nodules is purely an abiotic process or if microorganisms are involved in their formation. To determine the microbial contributions, detailed organic geochemical analyses were performed on ferromanganese nodules collected from across the southwest Indian Ocean. These analyses reveal the presence of specific terrestrial, marine and petroleum derived biomarkers, consistent with formation in a marine setting with a substantial influx of terrestrially derived (higher plant detritus) and naturally occurring petroleum-related organic matter. In contrast, only trace amounts of general bacterial biomarkers, commonly present in these types of depositional environments, were present. This indicates that the formation of these ferromanganese nodules is predominantly an abiotic process although a minor contribution from microbial mediated processes to the growth of these nodules cannot be completely ruled out.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, S.M. and Husain, A. (1987) Geochemistry of ferromanganese nodules from the Central Indian Basin. Marine Geology, 77, 165170.CrossRefGoogle Scholar
Aleksandrova, O.A. and Poluyaktov, V.F. (1996) Fatty acid composition of the iron–manganese nodules and surrounding sediments in the Pacific and Indian oceans. Oceanology, 35, 630637.Google Scholar
Aloisi, G., Bouloubassi, I., Heijs, S.K., Pancost, R.D., Pierre, C., Sinninghe Damsté, J.S., Gottschal, J.C., Forney, L.J. and Rouchy, J.-M. (2002) CH4- consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth and Planetary Science Letters, 203, 195203.CrossRefGoogle Scholar
Banerjee, R. and Miura, H. (1998) Mineral chemistry, bulk composition and source of the ferromanganese nodules nuclei from the Central Indian Ocean Basin. Geo-Marine Letters, 18, 6669.CrossRefGoogle Scholar
Boon, J.J., Rijpstra, W.I.C., de Lange, F., de Leeuw, J.W., Yoshioka, M. and Yuzuru, S. (1979) Black Sea sterol – a molecular fossil for dinoflagellate blooms. Nature, 277, 125127.CrossRefGoogle Scholar
Bradshaw, S.A. and Eglinton, G. (1993) Marine invertebrate feeding and the sedimentary record. Pp. 225–235 in: Organic Geochemistry (M.H. Engel and S.A. Macko, editors). Plenum Press, New York.Google Scholar
Bradshaw, S.A., O’Hara, S.C.M., Corner, E.D.S. and Eglinton, G. (1989) Assimilation of dietary sterols and feacal contribution of lipids by the marine invertebrates Neomysis integer, Scrobicularia plana and Nereis divesicolor. Journal of the Marine Biological Association of the United Kingdom, 69, 891911.CrossRefGoogle Scholar
Bray, E.E. and Evans, E.D. (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22, 215.CrossRefGoogle Scholar
Buchholz, B., Laczko, E., Pfennig, N., Rohmer, M. and Neunlist, S. (1993) Hopanoids of a recent sediment from Lake Constance as eutrophication markers. FEMS Microbiology Letters, 102, 217223.CrossRefGoogle Scholar
Canuel, E.A. and Martens, C.S. (1996) Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface. Geochimica et Cosmochimica Acta, 60, 17931806.CrossRefGoogle Scholar
Chauhan, O.S. (2003) Geochemistry of ferromanganese micronodules and associated Mn and trace metals diagenesis at high terrigenous depositional site of middle fan region, Bay of Bengal. Deep-Sea Research Part II : Topical Studies In Oceanography, 50, 961978.CrossRefGoogle Scholar
Chester, R. (2000) Components of marine sediments. Pp. 405–441 in: Marine Geochemistry (R. Chester, editor). Blackwell, Oxford, UK.Google Scholar
Colombo, J.C., Silverberg, N. and Gearing, J.N. (1997) Lipid biogeochemistry in the Laurentian Trough–II. Changes in composition of fatty acids, sterols and aliphatic hydrocarbons during early diagenesis. Organic Geochemistry, 26, 257274.CrossRefGoogle Scholar
Cronan, D.S. and Hodkinson, R.A. (1994) Element supply to surface manganese nodules along the Aitutaki–Jarvis transect, South Pacific. Journal of the Geological Society, 151, 391401.CrossRefGoogle Scholar
Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. and Hagen, W. (2003) Fatty acid trophic markers in the pelagic marine environment. Pp. 225–340 in: Advances in Marine Biology (A. Southward, P.A. Tyler, C.M. Young and L.A. Fuiman, editors). Academic Press, Elsevier, Amsterdam.Google Scholar
de Leeuw, J.W., Rijpstra, W.I.C., Schenck, P.A. and Volkman, J.K. (1983) Free, esterified and residual bound sterols in Black Sea Unit I sediments. Geochimica et Cosmochimica Acta, 47, 455465.CrossRefGoogle Scholar
Dixon, J.B. and Skinner, H.C.W. (1992) Manganese minerals in surface environments. Pp. 7–30 in: Biomineralization: processes of iron and manganese: modern and ancient environments (H.C.W. Skinner and R.W. Fitzpatrick, editors). Catena Verlag, Cremlingen-Destedt, Germany.Google Scholar
Doğrul Selver, A., Talbot, H.M., Gustafsson, Ö., Boult, S. and van Dongen, B.E. (2012) Soil organic matter transport along an sub-Arctic river–sea transect. Organic Geochemistry, 51, 6372.CrossRefGoogle Scholar
Dymond, J. and Eklund, W. (1978) A microprobe study of metalliferous sediment components. Earth and Planetary Science Letters, 40, 243251.CrossRefGoogle Scholar
Dymond, J., Lyle, M., Finney, B., Piper, D.Z., Murphy, K., Conard, R. and Pisias, N. (1984) Ferromanganese nodules from MANOP Sites H, S, and R – Control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta, 48, 931949.CrossRefGoogle Scholar
Eglinton, G. and Hamilton, R.J. (1963) The distribution of n-alkanes. Pp. 187–217 in: Chemical Plant Taxonomy (T. Swain, editor). Academic Press, New York.Google Scholar
Eglinton, G. and Hamilton, R.J. (1967) Leaf epicuticular waxes. Science, 156, 13221335.CrossRefGoogle ScholarPubMed
Ehrlich, H.L. (2002) Geomicrobiology, 4th Edition. Marcel Dekker Inc., New York, 768 pp.CrossRefGoogle Scholar
Ghiorse, W.C. and Ehrlich, H.L. (1992) Microbial biomineralization of iron and manganese. Pp. 75–99 in: Biomineralization: processes of iron and manganese: modern and ancient environments. (H.C.W. Skinner and R.W. Fitzpatrick, editors). Catena Verlag, Cremlingen-Destedt, Germany.Google Scholar
Glasby, G.P. (1977) Marine Manganese Deposits. Elsevier, Amsterdam, 523 pp.Google Scholar
Glasby, G.P. (2000) Manganese: Predominant role of nodules and crusts. Pp. 335–372 in: Marine Geochemistry (H.D. Schulz and M. Zabel, editors). Springer, Germany.Google Scholar
González, F.J., Somoza, L., Lunar, R., Martínez-Frías, J.,Martín Rubí, J.A., Torres, T., Ortiz, J.E., Díaz del Río, V., Pinheiro, L.M. and Magalhães, V.H. (2009) Hydrocarbon-derived ferromanganese nodules in carbonate-mud mounds from the Gulf of Cadiz: Mud-breccia sediments and clasts as nucleation sites. Marine Geology, 261, 6481.CrossRefGoogle Scholar
González, F.J., Somoza, L., Lunar, R., Martínez-Frías, J.,Rubí, J.A.M., Torres, T., Ortiz, J.E. and Díaz-del- Río, V. (2010) Internal features, mineralogy and geochemistry of ferromanganese nodules from the Gulf of Cadiz: The role of the Mediterranean Outflow Water undercurrent. Journal of Marine Systems, 80, 203218.CrossRefGoogle Scholar
González, F.J., Somoza, L., León, R., Medialdea, T., de Torres, T., Ortiz, J.E., Lunar, R., Martínez-Frías, J. and Merinero, R. (2012) Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic) : Palaeoenvironmental records of fluid venting and bottom currents. Chemical Geology, 310–311, 5678.CrossRefGoogle Scholar
Haddad, R.I., Martens, C.S. and Farrington, J.W. (1992) Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Organic Geochemistry, 19, 205216.CrossRefGoogle Scholar
Harwood, J.L. and Russell, N.J. (1984) Lipids in Plants and Microbes. George Allen & Unwin, London, 162 pp.CrossRefGoogle Scholar
Hein, J.R., Conrad, T.A. and Staudigel, H. (2010) Seamount mineral deposits: A source of rare metals for high-technology industries. Oceanography, 23, 184189.CrossRefGoogle Scholar
Herfort, L., Schouten, S., Boon, J.P. and Sinninghe Damsté, J.S. (2006) Application of the TEX86 temperature proxy to the southern North Sea. Organic Geochemistry, 37, 17151726.CrossRefGoogle Scholar
Hoefs, M.J.L., Schouten, S., De Leeuw, J.W., King, L.L., Wakeham, S.G. and Sinninghe Damsté, J.S. (1997) Ether lipids of planktonic archaea in the marine water column? Applied and Environmental Microbiology, 63, 30903095.CrossRefGoogle ScholarPubMed
Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Sinninghe Damsté, J.S. and Schouten, S. (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 224, 107116.CrossRefGoogle Scholar
Innes, H.E., Bishop, A.N., Head, I.M. and Farrimond, P. (1997) Preservation and diagenesis of hopanoids in Recent lacustrine sediments of Priest Pot, England. Organic Geochemistry, 26, 565576.CrossRefGoogle Scholar
Innes, H.E., Bishop, A.N., Fox, P.A., Head, I.M. and Farrimond, P. (1998) Early diagenesis of bacteriohopanoids in Recent sediments of Lake Pollen, Norway. Organic Geochemistry, 29, 12851295.CrossRefGoogle Scholar
International Seabed Authority (2010) A geological model of polymetallic nodule deposits in the Clarion–Clipperton fracture zone. ISA technical study series No. 6. Kingston, Jamaica, 211 pp.Google Scholar
Jauhari, P. and Iyer, S.D. (2008) A comprehensive view of manganese nodules and volcanics of the Central Indian Ocean Basin. Marine Georesources & Geotechnology, 26, 231258.CrossRefGoogle Scholar
Kaneda, T. (1991) Iso-fatty and anteiso-fatty acids in bacteria-biosynthesis, function, and taxonomic significance. Microbiological Reviews, 55, 288302.CrossRefGoogle Scholar
Kates, M., Kushner, D.J. and Matheson, A.T. (1993) The biochemistry of Archaea (Archaebacteria). Elsevier, Amsterdam, 582 pp.Google Scholar
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E.C. and Sinninghe Damsté, J.S. (2010) New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochimica et Cosmochimica Acta, 74, 46394654.CrossRefGoogle Scholar
Koga, Y., Akagawa-Matsushita, M., Ohga, M. and Nishihara, M. (1993) Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens. Systematic and Applied Microbiology, 16, 342.CrossRefGoogle Scholar
McClymont, E.L., Ganeshram, R.S., Pichevin, L.E., Talbot, H.M., van Dongen, B.E., Thunell, R.C., Haywood, A.M., Singarayer, J.S. and Valdes, P.J. (2012) Sea-surface temperature records of Termination 1 in the Gulf of California: Challenges for seasonal and interannual analogues of tropical Pacific climate change. Paleoceanography, 27, PA2202.CrossRefGoogle Scholar
Morgan, C.L. (2000) Resources estimates of the Clarion–Clipperton manganese nodule deposits. Pp. 145–170 in: Handbook of Marine Mineral Deposits (D.S. Cronan, editor). CRC, Boca Raton, USA.Google Scholar
Murray, J. and Renard, A.F. (1891) Manganese nodules. Pp. 341–378 in: Report on the scientific results of the voyage of the HMS Challanger, Vol 5 Deep-Sea Deposits (C.W. Thompson, editor). Eyre and Spottiswoode, London.Google Scholar
Naraoka, H., Yamada, K. and Ishiwatari, R. (2000) Recent sedimentary hopanoids in the northwestern Pacific alongside the Japanese Islands – their concentrations and carbon isotopic compositions. Organic Geochemistry, 31, 10231029.CrossRefGoogle Scholar
Nicholson, K., Hein, J.R., Buhn, B. and Dasgupta, S. (editors) (1997) Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society of London Special Publication, 119. Geological Society of London, London.Google Scholar
Pancost, R.D., Hopmans, E.C. and Sinninghe Damsté, J.S. (2001) Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochimica et Cosmochimica Acta, 65, 16111627.CrossRefGoogle Scholar
Pancost, R.D., Pressley, S., Coleman, J.M., Benning, L.G. and Mountain, B.W. (2005) Lipid biomolecules in silica sinters: indicators of microbial biodiversity. Environmental Microbiology, 7, 6677.CrossRefGoogle ScholarPubMed
Pancost, R.D., Pressley, S., Coleman, J.M., Talbot, H.M., Kelly, S.M., Farrimond, P., Schouten, S., Benning, L. and Mountain, B.W. (2006) Composition and implications of diverse lipids in NZ hydrothermal sinters. Geobiology, 4, 7192.CrossRefGoogle Scholar
Pearson, P.N., van Dongen, B.E., Nicholas, C.J., Pancost, R.D., Schouten, S., Singano, J.M. and Wade, B.S. (2007) Stable warm tropical climate through the Eocene Epoch. Geology, 35, 211214.CrossRefGoogle Scholar
Peters, K.E., Walters, C.C. and Moldowan, J.M. (2005) The Biomarker Guide, Vol. 2, Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge, UK. 704 pp.Google Scholar
Rona, P.A. (2008) The changing vision of marine minerals. Ore Geology Reviews, 33, 618666.CrossRefGoogle Scholar
Saito, H. and Suzuki, N. (2007) Distributions and sources of hopanes, hopanoic acids and hopanols in Miocene to recent sediments from ODP Leg 190, Nankai Trough. Organic Geochemistry, 38, 17151728.CrossRefGoogle Scholar
Schouten, S., Hoefs, M.J.L., Koopmans, M.P., Bosch, H.J. and Sinninghe Damsté, J.S. (1998) Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Organic Geochemistry, 29, 13051320.CrossRefGoogle Scholar
Schouten, S., Hopmans, E.C., Pancost, R.D. and Sinninghe Damsté, J.S. (2000) Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of lowtemperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America, 97, 1442114426.CrossRefGoogle Scholar
Schouten, S., Hopmans, E.C. and Sinninghe Damsté, J.S. (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry, 54, 1961.CrossRefGoogle Scholar
Sinninghe Damsté, J.S., Rijpstra, W.I.C., Hopmans, E.C., Prahl, F.G., Wakeham, S.G. and Schouten, S. (2002a) Distribution of membrane lipids of planktonic crenarchaeota in the Arabian Sea. Applied and Environmental Microbiology, 68, 29973002.CrossRefGoogle Scholar
Sinninghe Damsté, J.S., Schouten, S., Hopmans, E.C., van Duin, A.C.T. and Geenevasen, J.A.J. (2002b) Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research, 43, 16411651.CrossRefGoogle Scholar
Stadnitskaia, A., Muyzer, G., Abbas, B., Coolen, M.J.L., Hopmans, E.C., Baas, M., van Weering, T.C.E., Ivanov, M.K., Poludetkina, E. and Sinninghe Damsté, J.S. (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Marine Geology, 217, 6796.CrossRefGoogle Scholar
Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R. and Webb, S.M. (2004) Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287328.CrossRefGoogle Scholar
Tebo, B.M., Johnson, H.A., McCarthy, J.K. and Templeton, A.S. (2005) Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13, 421428.CrossRefGoogle ScholarPubMed
van Dongen, B.E., Rijpstra, W.I.C., Philippart, C.J.M., de Leeuw, J.W. and Sinninghe Damsté, J.S. (2000) Biomarkers in upper Holocene Eastern North Sea and Wadden Sea sediments. Organic Geochemistry, 31, 15331543.CrossRefGoogle Scholar
van Dongen, B.E., Talbot, H.M., Schouten, S., Pearson, P.N. and Pancost, R.D. (2006) Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania. Organic Geochemistry, 37, 539557.CrossRefGoogle Scholar
van Dongen, B.E., Roberts, A.P., Schouten, S., Jiang, W.-T., Florindo, F. and Pancost, R.D. (2007) Formation of iron sulfide nodules during anaerobic oxidation of methane. Geochimica et Cosmochimica Acta, 71, 51555167.CrossRefGoogle Scholar
Verlaan, P.A. (2008) The Role of Primary-Producer- Mediated Organic Complexation in Regional Variation in the Supply of Mn, Fe, Co, Cu, Ni and Zn to Oceanic, Non-Hydrothermal Ferromanganese Crusts and Nodules. Marine Georesources & Geotechnology, 26, 214230.CrossRefGoogle Scholar
Verlaan, P.A., Cronan, D.S. and Morgan, C.L. (2004) A comparative analysis of compositional variations in and between marine ferromanganese nodules and crusts in the South Pacific and their environmental controls. Progress in Oceanography, 63, 125158.CrossRefGoogle Scholar
Villinski, J.C., Hayes, J.M., Brassell, S.C., Riggert, V.L. and Dunbar, R.B. (2008) Sedimentary sterols as biogeochemical indicators in the Southern Ocean. Organic Geochemistry, 39, 567588.CrossRefGoogle Scholar
Vineesh, T.C., Nagender Nath, B., Banerjee, R., Jaisankar, S. and Lekshmi, V. (2009) Manganese nodule morphology as indicators for oceanic processes in the Central Indian Basin. International Geology Review, 51, 2744.CrossRefGoogle Scholar
Volkman, J.K., Holdsworth, D.G., Neill, G.P. and Bavor, H.J., Jr. (1992) Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Science of the Total Environment, 112, 203219.CrossRefGoogle ScholarPubMed
Wakeham, S.G., Lewis, C.M., Hopmans, E.C., Schouten, S. and Sinninghe Damsté, J.S. (2003) Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochimica et Cosmochimica Acta, 67, 13591374.CrossRefGoogle Scholar
Wang, X. and Müller, W.E.G. (2009) Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends in Biotechnology, 27, 375383.CrossRefGoogle ScholarPubMed
Weijers, J.W.H., Schouten, S., Spaargaren, O.C. and Sinninghe Damsté, J.S. (2006) Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry, 37, 16801693.CrossRefGoogle Scholar
Werne, J.P., Baas, M. and Sinninghe Damsté, J.S. (2002) Molecular isotopic tracing of carbon flow and trophic relationships in a methane-supported benthic microbial community. Limnology and Oceanography, 47, 16941701.CrossRefGoogle Scholar
Zhang, F.S., Lin, C.Y., Bian, L.Z., Glasby, G.P. and Zhamoida, V.A. (2002) Possible evidence for the biogenic formation of spheroidal ferromanganese concretions from the Eastern Gulf of Finland, the Baltic Sea. Baltica, 15, 2329.Google Scholar
Zhang, C.L., Pancost, R.D., Sassen, R., Qian, Y. and Macko, S.A. (2003) Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico. Organic Geochemistry, 34, 827836.CrossRefGoogle Scholar