Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T01:05:14.306Z Has data issue: false hasContentIssue false

From structure topology to chemical composition. XXVI. Crystal structure and chemical composition of a possible new mineral of the murmanite group (seidozerite supergroup), ideally Na2CaTi4(Si2O7)2O4(H2O)4, from the Lovozero alkaline massif, Kola Peninsula, Russia

Published online by Cambridge University Press:  29 May 2018

Elena Sokolova*
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB, R3T 2N2Canada
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB, R3T 2N2Canada
*
*Author for correspondence: Elena Sokolova, email: elena_sokolova@umanitoba.ca

Abstract

The crystal structure of a murmanite-related mineral (MRM) of the murmanite group (seidozerite supergroup), ideally Na2CaTi4(Si2O7)2O4(H2O)4, from Mt. Pyalkimpor, the Lovozero alkaline massif, Kola Peninsula, Russia, was refined in space group P$ {\bar 1} $ with a = 5.363(2), b = 7.071(2), c = 12.176(5) Å, α = 92.724(3), β = 107.542(7), γ = 90.13(2)°, V = 439.7(4) Å3 and R1 = 5.72%. On the basis of electron-microprobe analysis, the empirical formula calculated on 22 (O + F), with two constraints derived from structure refinement, OH = 0.11 per formula unit (pfu) and H2O = 3.89 pfu, is (Na2.12K0.07Sr0.01)Σ2.20Ca0.85(Ti3.01Nb0.39Mn0.20Fe2+0.19Mg0.17Zr0.01Al0.01)Σ3.98(Si4.20O14)[O3.90F0.10]Σ4[(H2O)3.89(OH)0.11]Σ4{P0.03}, with Z = 1. It seems unlikely that {P0.03} belongs to MRM itself. The crystal structure of MRM is an array of TS blocks (Titanium-Silicate) connected via hydrogen bonds. The TS block consists of HOH sheets (H = heteropolyhedral, O = octahedral) parallel to (001). In the O sheet, the Ti-dominant MO1 site and Ca-dominant MO2 site give ideally (Ca□)Ti2 pfu. In the H sheet, the Ti-dominant MH site and Na-dominant AP site give ideally Na2Ti2 pfu. The MH and AP polyhedra and Si2O7 groups constitute the H sheet. The ideal structural formula of MRM of the form AP2MH2MO4(Si2O7)2(XOM,A)4(XOA)2(XPM,A)4 is Na2Ti2(Ca□)Ti2(Si2O7)2O4(H2O)4. MRM is a Ca-rich and Na-poor analogue of murmanite, ideally Na2Ti2Na2Ti2(Si2O7)2O4(H2O)4 and a Na-rich and (OH)-poor analogue of calciomurmanite, ideally (Ca□)Ti2(Na□)Ti2(Si2O7)2O2[O(OH)](H2O)4. MRM and (murmanite and calciomurmanite) are related by the following substitutions: O(Ca2+□)MRMO(Na+2)mur and O(Ca2+□)MRM + H(Na+2)MRM + O(O2–)MRMO(Na+□)cal + H(Ca2+□)cal + O[(OH)]cal. MRM is a possible new mineral of the murmanite group (seidozerite supergroup) where Ti + Mn + Mg = 4 apfu.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ed Grew

References

Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals II (O'Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.Google Scholar
Cámara, F., Sokolova, E., Hawthorne, F.C. and Abdu, Y. (2008) From structure topology to chemical composition. IX. Titanium silicates: revision of the crystal chemistry of lomonosovite and murmanite, Group-IV minerals. Mineralogical Magazine, 72, 12071228.Google Scholar
Cámara, F., Sokolova, E. and Nieto, F. (2009) Cámaraite, Ba3NaTi4(Fe2+,Mn)8 (Si2O7)4O4(OH,F)7. II. The crystal structure and crystal chemistry of a new group-II Ti-disilicate mineral. Mineralogical Magazine, 73, 855870.Google Scholar
Cámara, F., Sokolova, E., Abdu, Y.A., Hawthorne, F.C. and Khomyakov, A.P. (2013 a) Kolskyite, (Ca□)Na2Ti4(Si2O7)2O4(H2O)7, a Group-IV Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. The Canadian Mineralogist, 51, 921936.Google Scholar
Cámara, F., Sokolova, E., Hawthorne, F.C., Rowe, R., Grice, J.D. and Tait, K.T. (2013 b) Veblenite, K22Na(Fe2+5Fe3+4Mn2+7□)Nb3Ti(Si2O7)2(Si8O22)2O6(OH)10(H2O)3, a new mineral from Seal Lake, Newfoundland and Labrador: mineral description, crystal structure, and a new veblenite (Si8O22) ribbon. Mineralogical Magazine, 77, 29552974.Google Scholar
Cámara, F., Sokolova, E., Abdu, Y.A., Hawthorne, F.C., Charrier, T., Dorcet, V. and Carpentier, J.-F. (2017) Fogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, a Group-I TS-block mineral from the Lagoa do Fogo, the Fogo volcano, the São Miguel Island, the Azores: Description and crystal structure. Mineralogical Magazine, 81, 383402.Google Scholar
Gutkova, N. (1930) Sur un nouveau titano-silicate – la mourmanite de Lujawrurt. Comptes Rendus de l'Académie des Sciences de l'URSS, 27, 731736 [in Russian].Google Scholar
Khalilov, A.D. (1989) Refinement of the crystal structure of murmanite and new data on its crystal chemistry properties. Mineralogicheskii Zhurnal, 11, 1927 [in Russian].Google Scholar
Lykova, I.S., Pekov, I.V., Chukanov, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Zubkova, N.V., Britvin, S.N. and Giester, G. (2015) Calciomurmanite, IMA 2014-103.CNMNC Newsletter No. 25, June 2015, page 530; Mineralogical Magazine, 79, 529535.Google Scholar
Lykova, I.S., Pekov, I.V., Chukanov, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Zubkova, N.V., Britvin, S.N. and Giester, G. (2016) Calciomurmanite, (Na,□)2Ca(Ti,Mg,Nb)4[Si2O7]2 O2(OH,O)2(H2O)4, a new mineral from the Lovozero and Khibiny alkaline compexes, Kola Peninsula, Russia. European Journal of Mineralogy, 28, 835845.Google Scholar
Pekov, I.V., Britvin, S.N., Zubkova, N.V., Chukanov, N.V., Bryzgalov, I.A., Lykova, I.S., Belakovskiy, D.I. and Pushcharovsky, D.Yu. (2013) Vigrishinite, Zn2Ti4–x Si4O14(OH,H2O,□)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia. Geology of Ore Deposits, 55, 575586.Google Scholar
Pekov, I.V., Lykova, I.S., Chukanov, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Zolotarev, A.A. Jr. and Zubkova, N.V. (2014) Zvyaginite, NaZnNb2Ti(Si2O7)2O(OH,F)3(H2O)4+x (x < 1), a new mineral of the epistolite group from the Lovozero alkaline pluton, Kola Peninsula, Russia. Geology of Ore Deposits, 56, 644656.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” φ(ρΖ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.Google Scholar
Sokolova, E. and Cámara, F. (2013) From structure topology to chemical composition. XVI. New developments in the crystal chemistry and prediction of new structure topologies for titanium disilicate minerals with the TS block. The Canadian Mineralogist, 51, 861891.Google Scholar
Sokolova, E. and Cámara, F. (2017) The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineralogical Magazine, 81, 14571484.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797806.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2018) From structure topology to chemical composition. XXIV. Revision of the crystal structure and chemical formula of vigrishinite, NaZnTi4(Si2O7)2O3(OH)(H2O)4, a seidozerite-supergroup mineral from the Lovozero alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 82, 787807.Google Scholar
Sokolova, E.V., Egorov-Tismenko, Yu.K. and Khomyakov, A.P. (1988) Crystal structure of sobolevite. Soviet Physics Doklady, 33, 711714.Google Scholar
Sokolova, E., Hawthorne, F.C. and Khomyakov, A.P. (2005) Polyphite and sobolevite: revision of their crystal structures. The Canadian Mineralogist, 43, 15271544.Google Scholar
Sokolova, E., Abdu, Y.A., Hawthorne, F.C., Genovese, A., Cámara, F. and Khomyakov, A.P. (2015) From structure topology to chemical composition. XVIII. Titanium silicates: revision of the crystal structure and chemical formula of betalomonosovite, a Group-IV TS-block mineral from the Lovozero alkaline massif, Kola Peninsula, Russia. The Canadian Mineralogist, 53, 401428.Google Scholar
Sokolova, E., Genovese, A., Falqui, A., Hawthorne, F.C. and Cámara, F. (2017) From structure topology to chemical composition. XXIII. Revision of the crystal structure and chemical formula of zvyaginite, Na2ZnTiNb2(Si2O7)2O2(OH)2(H2O)4, a seidozerite-supergroup mineral from the Lovozero alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 81, 15331550.Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, physical and chemical tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Supplementary material: File

Sokolova and Hawthorne supplementary material

Sokolova and Hawthorne supplementary material 1

Download Sokolova and Hawthorne supplementary material(File)
File 28.5 KB
Supplementary material: File

Sokolova and Hawthorne supplementary material

Sokolova and Hawthorne supplementary material 2

Download Sokolova and Hawthorne supplementary material(File)
File 132.3 KB