Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T10:38:37.370Z Has data issue: false hasContentIssue false

Garnet-biotite-cordierite thermometry and barometry in the Cashel thermal aureole, Connemara, Ireland

Published online by Cambridge University Press:  05 July 2018

Peter J. Treloar*
Affiliation:
Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK

Abstract

A number of geothermometers and geobarometers involving coexisting garnet, biotite, and cordierite have been used to calculate the pressures and temperatures of metamorphism of the Cashel thermal aureole in Connemara. Temperatures from the garnetbiotite thermometer show a wide variation between calibrations, and are markedly different from those obtained from the garnet-ordierite thermometer. These variations, together with the possibility of extensive reequilibration between garnet and cordierite rims and biotite, indicate that the use of exchange reaction thermometry, for these rocks at least, may be invalid. The various calibrations of the garnet-cordierite-sillimanitequartz geobarometer give reasonably consistent pressure estimates which, after allowance for partial pressures of water, indicate pressures of metamorphism of about 5±1 kb.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohlen, S. R. and Essene, G. J. (1980). Geol. Soc. Am. Bull. 91, 107-9.2.0.CO;2>CrossRefGoogle Scholar
Currie, K. L. (1971). Contrib. Mineral. Petrol. 33, 215-26.CrossRefGoogle Scholar
Evans, B. W. and Leake, B. E. (1970). Proc. R. It. Acad. 70B, 105-39.Google Scholar
Ferry, J. M. and Spear, F. S. (1978). Contrib. Mineral. Petrol. 66, 113-7.CrossRefGoogle Scholar
Hensen, B. J. and Green, D. H. (1971). Ibid. 33, 309-30.Google Scholar
Hensen, B. J. and Green, D. H. (1973). Ibid. 38, 151-66.Google Scholar
Holdaway, M. J. and Lee, S. M. (1977). Ibid. 63, 175-98.Google Scholar
Leake, B. E. (1969). Q. J. geol. Soc. Lond. 125, 219-76.CrossRefGoogle Scholar
Leake, B. E. and Skirrow, G. (1960). J. Geol. 68, 2340.CrossRefGoogle Scholar
Newton, R. C. and Wood, B. J. (1979). Contrib. Mineral. Petrol. 68, 391-405.CrossRefGoogle Scholar
Richardson, S. W. (1968). J. Petrol. 9, 467-88.CrossRefGoogle Scholar
Thompson, A. B. (1976). Am. J. Sci. 276, 425-54.CrossRefGoogle Scholar
Weisbrod, A. (1973). Carnegie Instn. Washington Yearb. 72, 515-21.Google Scholar
Wells, P. D. A. and Richardson, S. W. (1980). In Caledonides of the British Isles-reviewed. (Eds. Harris, A. L., Holland, C. H., and Leake, B. E.) Geol. Soc. Lond. Sp. Publ. 8, 339-44.Google Scholar
Wood, B. J. (1973). Contrib. Mineral. Petrol. 40, 253-8.CrossRefGoogle Scholar
Yardley, B. W. D., Long, C. D., and Max. M. D. (1980). In Caledonides of the British Isles-reviewed. (Eds. Harris, A. L., Holland, C. H., and Leake, B. E.) Geol. Soc. Lond. Sp. Publ. 8, 369-74.Google Scholar