Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T07:15:39.173Z Has data issue: false hasContentIssue false

Genetic significance of zircon in orthogneisses from Sierra Nevada (Betic Cordillera, Spain)

Published online by Cambridge University Press:  02 January 2018

M. D. Ruiz-Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
C. Sanz de Galdeano
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada. Facultad de Ciencias, 18071 Granada, Spain
*
*E-mail: mdruiz@uma.es

Abstract

Zircon from two types of orthogneisses (inheritance-rich and inheritance-poor) from Sierra Nevada (Betic Cordillera, Spain) was investigated by integrating U–Pb geochronology, cathodoluminescence and back-scattered SEM imaging, laser-ablation inductively coupled plasma mass spectrometry analyses and Raman spectroscopy to examine the conditions of magmatic zircon growth and the variable extent and mechanisms of the Alpine modifications. Zircon from inheritance-rich gneiss consists of two main domains: inherited (Neoproterozoic-to-Early Paleozoic and Devonian) cores and magmatic overgrowths, which provided 206Pb/238U concordant ages of 286 ± 3 Ma. In inheritance-poor gneiss, zircons consist of magmatic cores and very altered rims defining a discordia with an upper intercept with the Concordia at 287 + 21 –22 Ma and a lower intercept at 20.8 + 48.6 –20.8 Ma. Magmatic domains of zircon from inheritance-rich gneiss have lower rare-earth element (REE) contents than magmatic domains from inheritance-poor gneiss, reflecting the less evolved nature of the melt. Altered domains in zircon from inheritance-poor gneisss how greater U concentrations, lower REE concentrations and lower Th/U ratios relative to the cores, interpreted as representing Pb loss from the U-rich magmatic domains during the Alpine event. Morphological changes within single grains and between populations reflects the evolution during magmatic cooling. We show that, whereas classic methods allow two different interpretations for the geodynamic setting of the two types of gneisses, a complete study of composition, morphology and structure of zircon can help to decide that a model based on a common source for the granitic melt better fits the zircon characteristics than a model based on melts generated in two different geotectonic settings.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bao, X. (1995) Two kinds of composition variation trends of zircons and their significance in origin interpretation. Acta Mineralogica Sinica, 15, 404410.Google Scholar
Bao, X. and Gan, X. (1996) The minerageny of two groups of zircons from plagioclase amphibolite of Mayuan group in northern Fujian. Acta Petrologica et Mineralogica, 15, 7379.Google Scholar
Bao, X., Lib, H. and Songnian, S. (1998) A Raman spectroscopic study of zircons on micro-scale and its significance in explaining the origin of zircons. Scientia Geologica Sinica, 33, 455462.Google Scholar
Bea, F., Montero, P. and Ortega, M. (2006) A LA-ICP-MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon forming processes. The Canadian Mineralogist, 44, 693714.CrossRefGoogle Scholar
Belousova, E., Griffin, W. and Suzanne, Y., (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602622.CrossRefGoogle Scholar
Belousova, E.A., Griffin, W.L. and O'Reilly, S.I. (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. Journal of Petrology, 47, 329353.CrossRefGoogle Scholar
Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J. and Foudoulis, C. (2003) TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155170.CrossRefGoogle Scholar
Chen, Y.X., Zheng, Y.F. and Xie, L.W. (2010) Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U—Th—Pb and Lu—Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos, 114, 132154.CrossRefGoogle Scholar
Chen, Y-X., Zheng, YE, Chen, R.X., Zhan, S.B., Li, Q., Dai, M. and Chen, L. (2011) Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism: Evidence from U—Pb ages, trace elements, and O—Hf isotopes. Geochimica et Cosmochimica Acta, 75, 48774898.CrossRefGoogle Scholar
Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P. (2003) Atlas of zircon textures. Pp. 468-500 in: Zircon (J.M. Hanchar and P.W.O. Hoskin, editors). Reviews in Mineralogy and Geochemistry, 53. Mineralogical Society of America, Washington DC.Google Scholar
Dawson, P., Hargreave, M.M. and Wilkinson, G.R. (1971) The vibrational spectrum of zircon (ZrSiO4). Journal of Physics C: Solid State Physics, 4, 240256.CrossRefGoogle Scholar
Degeling, H., Eggins, S. and Ellis, D.J. (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineralogical Magazine, 65, 749758 CrossRefGoogle Scholar
Fraser, G., Ellis, D. and Eggins, S. (1997) Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology, 25, 607610.2.3.CO;2>CrossRefGoogle Scholar
Geisler, T., Schaltegger, U. and Tomaschek, E (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements, 3, 4350.CrossRefGoogle Scholar
Gómez-Pugnaire, M.T., Galindo-Zaldívar, J., Rubatto, D., González-Lodeiro, F., López-Sánchez-Vizcaíno, V. and Jabaloy, A. (2004) A reinterpretation of the Nevado-Filábride and Alpujárride Complex (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses western Sierra Nevada, S Spain. Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 303322.Google Scholar
Gómez-Pugnaire, M.T., Rubatto, D., Fernández-Soler, J.M., Jabaloy, A., López- Sánchez- Vizcaíno, V., González-Lodeiro, F., Galindo-Zaldívar, J. and Padrón-Navarta, I A. (2012) Late Variscan magma-tism in the Nevado-Filábride Complex: U-Pb geo-chronologic evidence for the pre-Mesozoic nature of the deepest Betic complex (SE Spain). Lithos, 146-147, 93111.CrossRefGoogle Scholar
Hanchar, J.M. and Miller, C.F. (1993) Zircon zonation patterns as revealed by cathodoluminescence and back-scattered electron images: implications for interpretation of complex crustal histories. Chemical Geology, 110, 113.CrossRefGoogle Scholar
Harley, S.L., Kelly, N.M. and Möller, A. (2007) Zircon behaviour and the thermal histories of mountain chains. Elements, 3, 2530.CrossRefGoogle Scholar
Hartmann, L.A., Takehara, L., Leite, J.A.D., McNaughton, N.J. and Vasconcellos, M. (1997) Fracture sealing in zircon as evaluated by electron microprobe analyses and backscattered electron imaging. Chemical Geology, 141, 6772.CrossRefGoogle Scholar
Hoskin, P.W.O. and Black, L.P (2000) Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423439.CrossRefGoogle Scholar
Hoskin, P.W.O. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petro-genesis. Pp. 27-62 in: (J.M. Zircon Hanchar and P.W.O. Hoskin, editors). Reviews in Mineralogy & Geochemistry, 53. Mineralogical Society of America, Washington DC.Google Scholar
Kolesov, B.A., Geiger, C.A. and Armbruster, T. (2001) The dynamic properties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy. European Journal of Mineralogy, 13, 939948.CrossRefGoogle Scholar
Martin, L.A.J., Duchene, S., Deloule, E. and Vanderhaeghe, O. (2008) Mobility of trace elements and oxygen in zircon during metamorphism: consequences for geochemical tracing. Earth and Planetary Science Letters, 267, 161174.CrossRefGoogle Scholar
Martínez-Martínez, J.M., Torres-Ruiz, J., Pesquera, A. and Gil-Crespo, P.P. (2010) Geological relationships and U—Pb zircon and 40Ar/39Ar tourmaline geochron-ology of gneisses and tourmalinites from the Nevado— Filabride complex (western Sierra Nevada, Spain): tectonic implications. Lithos, 119, 238250.CrossRefGoogle Scholar
Miller, C.F., McDowell, S.M. and Mapes, R.W. (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31, 529532.2.0.CO;2>CrossRefGoogle Scholar
Möller, A., O'Brien, PL, Kennedy, A. and Kröner, A. (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). EMU Notes in Mineralogy, 5, 6582.Google Scholar
Montero, P., Haissen, F., El Archic, A., Rjimati, E. and Bea, E (2014) Timing of Archean crust formation and cratonization in the Awsard-Tichla zone of the NW Reguibat Rise, West African Craton: A SHRIMP, Nd—Sr isotopes, and geochemical reconnaissance study. Precambrian Research, 242, 112137.CrossRefGoogle Scholar
Müller, W (2003) Strengthening the link between geochronology, textures and petrology, Earth and Planetary Science Letters, 206, 237251.CrossRefGoogle Scholar
Nasdala, L., Pidgeon, R.T and Wolf, D. (1996) Heterogeneous metamictization of zircon on micro-scale. Geochimica et Cosmochimica Acta, 60, 10911097.CrossRefGoogle Scholar
Nasdala, L., Pidgeon, R.T., Wolf, D. and Irmer, G. (1998) Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Mineralogy and Petrology, 62, 127.CrossRefGoogle Scholar
Nasdala, L., Hanchar, J.M., Rhede, D., Kennedy, A.K. and Váczi, T (2010) Retention of uranium in complexly altered zircon: An example from Bancroft, Ontario. Chemical Geology, 269, 290300.CrossRefGoogle Scholar
Nieto, J.M. (1996) Petrología y geoquímica de los gneisses del Complejo del Mulhacén, Cordilleras Béticas. PhD thesis, University of Granada, Spain, 210 pp.Google Scholar
Nieto, J.M., Puga, E. and Díaz de Federico, A. (2000) Late Variscan pyroclastic rocks from the Mulhacén Complex (Betic Cordillera, Spain). Pp. 217-224 in: Volcaniclastic Rocks, from Magmas to Sediments (Leyrit, H. and Montenat, Ch., editors). Gordon and Breach Science Publishers, New York.Google Scholar
Pidgeon, R.T. (1992) Recrystallization of oscillatory-zoned zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology, 110, 463472.CrossRefGoogle Scholar
Poller, U., Huth, J., Hoppe, P. and Williams, I.S. (2001) REE, U, Th, and Hf distribution in zircon from western Carpathian Variscan granitoids: a combined cathodoluminescence and ion microprobe study. American Journal of Sciences, 301, 358376.Google Scholar
Platt, IE, Behr, W.M., Johansen, K and Williamns, R. (2013) The Betic-Rif Arc and its Orogenic Hinterland: A review. Annual Reviews Earth Planetary Sciences, 41, 313–57.CrossRefGoogle Scholar
Puga, E., Díaz de Federico, A. and Nieto, J.M. (2002) Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: a review. Geodinamica Acta, 15, 2343.CrossRefGoogle Scholar
Pupin, J.P. (1980) Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207220.CrossRefGoogle Scholar
Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U—Pb ages and metamorphism. Chemical Geology, 184, 123138.CrossRefGoogle Scholar
Rubatto, D. and Hermann, J. (2007) Zircon behaviour in deeply subducted rocks. Elements, 3, 3135.CrossRefGoogle Scholar
Rubatto, D., Muntener, O., Barnhoorn, A. and Gregory C. (2008) Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). American Mineralogist, 93, 15191529.CrossRefGoogle Scholar
Ruiz Cruz, M.D. and Sanz de Galdeano, C. (2013) Coesite and diamond inclusions, exsolution microstructures and chemical patterns in ultrahigh pressure garnet from Ceuta (Northern Rif, Spain). Lithos, 177, 184206.CrossRefGoogle Scholar
Ruiz Cruz, M.D. and Sanz de Galdeano, C. (2014) Garnet variety and zircon ages in UHP meta-sedimentary rocks from the Jubrique zone (Alpujárride Complex, Betic Cordillera, Spain): Evidence for a pre-Alpine emplacement of the Ronda peridotites. International Geology Review, 56, 845868.CrossRefGoogle Scholar
Ruiz Cruz, M.D., Sanz de Galdeano, C. and Garrido, C. (2011) EBSD-based identification and quantification of diamond from the Rif gneisses (Spain and Morocco): Economic implications. Economic Geology, 106, 12411249.CrossRefGoogle Scholar
Ruiz Cruz, M.D., Sanz de Galdeano, C. and Santamaría, A. (2015) Petrology and thermobarometric estimations in metasediments, orthogneisses and eclogites from the Nevado-Filábride Complex in the western Sierra Nevada (Betic Cordillera, Spain). The Canadian Mineralogist, 53, 10831107.CrossRefGoogle Scholar
Schaltegger, U., Fanning, C.M., Günther, D., Maurin, J. C, Schulmann, K. and Gebauer, D. (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope cathodolumin-escence and microchemical evidence. Contributions to Mineralogy and Petrology, 134, 186201.CrossRefGoogle Scholar
Scoates, J.S. and Chamberlain, K.R. (1995) Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: Petrologic consequences and U-Pb ages. American Mineralogist, 80, 13171327.CrossRefGoogle Scholar
Sun, S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. Pp. 313-345 in: Magmatism in the Ocean Basins (Saunders, A.D. and Norry, M.J., editors). Geological Society Special Publication, 42. Geological Society of London, London.Google Scholar
Syme, R.W.G., Lockwood, D.J. and Kerr, H.J. (1977) Raman spectrum of synthetic zircon (ZrSiO4) and thorite (ThSiO4). Journal of Physics C: Solid State Physics, 10, 13351348.CrossRefGoogle Scholar
Vavra, G. (1990) On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contributions to Mineralogy and Petrology, 106, 9099.CrossRefGoogle Scholar
Vavra, G. (1993) A guide to quantitative morphology of accessory zircon. Chemical Geology, 110, 1528.CrossRefGoogle Scholar
Vavra, G. (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contributions to Mineralogy and Petrology, 117, 331344.CrossRefGoogle Scholar
Vavra, G., Schmid, R. and Gebauer, D. (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochron-ology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380–04.CrossRefGoogle Scholar
Villaseca, C., Barbero, L and Rogers, G. (1998) Crustal origin of Hercynian peraluminous granitic batholiths of central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos, 43, 5579.CrossRefGoogle Scholar
Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295304.CrossRefGoogle Scholar
Whitehouse, M.J. and Platt, J.P. (2003) Dating high grade metamorphism - constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology, 145, 6174.CrossRefGoogle Scholar
Whitney, D.L. and Evans, B.W (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Wu, Y.-B. and Zheng, Y.-F. (2004) Genesis of zircon and its constraints on interpretation of U-Pb age. Chinesse Science Bulletin, 49, 15541569.CrossRefGoogle Scholar
Xia, Q.-X., Zheng, Y.-F., Yuan, H. and Wu, F.-Y (2009) Contrasting Lu—Hf and U—Th—Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos, 112, 477–96.CrossRefGoogle Scholar
Xia, Q.-X., Zheng, Y.-F. and Hu, Z. (2010) Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos, 114, 385–12.CrossRefGoogle Scholar
Zhang, M., Salje, E.K.H., Farnan, I., Graeme-Barber, A., Daniel, P., Ewing, R.C., Clark, A.M. and Leroux, H. (2000) Metamictization of zircon: Raman spectro-scopic study. Journal of Physics: Condensed Matter, 12, 19151925.Google Scholar
Zheng, Y-E, Gao, T.-S., Wu, Y.-B., Gong, B. and Liu, X.M. (2007) Fluid flow during exhumation of deeply subducted continental crust: zircon U—Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25, 267283.CrossRefGoogle Scholar
Supplementary material: File

Ruiz-Cruz and de Galdeano supplementary material

Supplemental Table S1

Download Ruiz-Cruz and de Galdeano supplementary material(File)
File 179.2 KB
Supplementary material: File

Ruiz-Cruz and de Galdeano supplementary material

Supplemental Table S2

Download Ruiz-Cruz and de Galdeano supplementary material(File)
File 172 KB
Supplementary material: File

Ruiz-Cruz and de Galdeano supplementary material

Supplemental Table S3

Download Ruiz-Cruz and de Galdeano supplementary material(File)
File 40.4 KB