Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T20:38:29.988Z Has data issue: false hasContentIssue false

Hakite from Příbram, Czech Republic: compositional variability, crystal structure and the role in Se mineralization

Published online by Cambridge University Press:  02 January 2018

P. Škácha*
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, CZ–128 43, Prague 2, Czech Republic Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - Horní Počernice, 193 00, Czech Republic Mining muzeum Příbram, Hynka Kličky Place 293, Příbram VI, 261 01
J. Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - Horní Počernice, 193 00, Czech Republic
L. Palatinus
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Prague 8, 182 21, Czech Republic
E. Makovicky
Affiliation:
Department of Geosciences and Natural Resource Management, University of Copenhagen, Østervoldgade 10, 1350 Copenhagen K, Denmark
J. Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Prague 8, 182 21, Czech Republic
I. Macek
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - Horní Počernice, 193 00, Czech Republic Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 602 00, Brno, Czech Republic
V. Goliáš
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, CZ–128 43, Prague 2, Czech Republic

Abstract

Hakite, ideally Cu10Hg2Sb4Se13, is a Se-dominant member of the tetrahedrite group occurring at only a few localities in the World. A new occurrence of this mineral in the Příbram uranium and base-metal ore district, Central Bohemia, Czech Republic, is reported in this paper. Hakite was found to be locally abundant and was identified in several samples with Se mineralization. Three chemically distinct types of hakite were distinguished based on electron microprobe study, Hg-rich hakite (hakite sensu stricto), Zn-rich hakite and Cd-rich hakite. Hg-hakite dominates among the samples studied. Its average empirical formula based on 29 apfu (n = 54) is (Cu5.61Ag0.39)∑6.00Cu4.00(Hg1.61Zn0.20Cu0.19Cd0.15Fe0.04)∑2.19(Sb3.85As0.28)∑4.13(Se11.55S1.14)∑12.69 . Less common is the Zn-hakite, (Cu5.80Ag0.20)∑6.00Cu4.00(Zn1.33Hg0.42Cd0.22Cu0.18Fe0.01)∑2.16(Sb3.85As0.26)∑4.11(Se10.92S1.81)∑12.73 (n = 22), and rare Cd-hakite has an empirical formula (n = 7) of (Cu5.84Ag0.16)∑6.00Cu4.00(Cd1.27Zn0.60Cu0.10Hg0.07Fe0.02)∑2.06(Sb4.00As0.19)∑4.19(Se12.14S0.61)∑12.75. The refined unit cell of Hg-hakite from Příbram, obtained from powder X-ray diffraction data, is a = 10.8783(3) Å with V = 1287.3(1) Å3 (Z = 4, for the cubic space group I4̄3m). Structure refinement from the precession electron diffraction data collected on the transmission electron microscope (R = 24.4% for 424 observed reflections), confirmed that hakite is isostructural with tetrahedrite. The evolution of hydrothermal fluids, from which Se mineralization formed, suggests a distinct enrichment in sulfur and depletion in selenium over the time span of crystallization.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E.B. (1987) Isotopic-geochronological investigation of the uranium mineralization of Czechoslovakia.Unpublished Czechoslovak Uranium Industry Report 1962-87.Google Scholar
Brodin, B.V. (1981) Silver-bearing hakite. International Geology Review, 23, 7173.CrossRefGoogle Scholar
Burnham, C.W. (1962) Lattice constant refinement. Carnegie Institute of Washington Yearbook, 61, 132—135.Google Scholar
Chakrabarti, D.J. and Laughlin, D.E. (1981) The Cu-Se (copper-selenium) system. Bulletin of Alloy Phase Diagrams, 2, 305315.CrossRefGoogle Scholar
Dymkov, J.M. (1985) Selenidy nasturan-karbonatnych žil. Pp. 153—162 in: Paragenezis mineralov uranonosnych žil. Nedra, Moscow.Google Scholar
Förster, H.-J., Rhede, D. and Tischendorf, G. (2002) Continuous solid solution between mercurian girau-dite and hakite. The Canadian Mineralogist, 40, 11611170.CrossRefGoogle Scholar
Förster, H.-J. and Rhede, D. (2004) Mineralogy of the Niederschlema — Alberoda U-Se-polymetallic deposit, Erzgebirge, Germany. III. First indication for complete miscibility between tennantite and giraudite. The Canadian Mineralogist, 42, 17191732.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J.. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717—728.CrossRefGoogle Scholar
Johan, Z. and Kvaček M. (1971) La hakite, un nouveau minéral du groupe de la tetraédrite. Bulletin de la Société française de minéralogie et de cristallogra-phie, 94, 381384.Google Scholar
Johan, Z., Picot, P. and Ruhlmann, F. (1982) Evolution paragénétique de la minéralisation uranifere de Chaméane (Puy-de-Dôme), France: chaméanite, gef-froyite et giraudite, trois séléniures nouveaux de Cu, Fe, Ag et As. Tschermaks Mineralogische und Petrographische Mitteilungen, 29, 151167.CrossRefGoogle Scholar
Karup-Møller, S. and Makovicky, E. (1999) Exploratory studies of the solubility of minor elements in tetrahedrite. Part II. Selenium and tellurium as anions in Zn-Fe tetrahedritesi. Neues Jahrbuch für Mineralogie, Monatshefte, 385-399.Google Scholar
Karup-Møller, S. and Makovicky, E. (2003) Exploratory studies of the solubility of minor elements in tetrahedrite. Part V Mercurian tetrahedrite. Neues Jahrbuch für Mineralogie, Monatshefte, 73—83.CrossRefGoogle Scholar
Karup-Møller, S. and Makovicky, E. (2004) Exploratory studies of the solubility of minor elements in tetrahedrite VI. Zinc and the combined zinc-mercury substitutions. Neues Jahrbuch für Mineralogie, Monatshefte, 508-524.CrossRefGoogle Scholar
Kolb, U., Gorelik, T., Kuebel, C, Often, M.T. and Hubert, D. (2007) Towards automated diffraction tomography: Part I-Dataacquisition. Ultramicroscopy, 107, 507513.CrossRefGoogle Scholar
Kopecký, S., Pauliš, P. and Škoda, R. (2010) Nový nález selenidů na výskytu uranových rud Černý Důl v Krkonoších (Česká republika). Bulletin mineralogicko — petrologického oddeleni Národního Muzea, 18(2), 43–9.Google Scholar
Kvaček, M. (1973) Selenides from the uranium deposits of western Moravia, Czechoslovakia - part 1. Acta Universitatis Carolinae: Geologica, 1-2, 2336.Google Scholar
Kvaček, M. (1979) Selenides from the uranium deposits of western Moravia, Czechoslovakia — part 2. Acta Universitatis Carolinae: Geologica, 1—2, 15—38.Google Scholar
Kvaček, M. (1987) Mineralogicko - geochemická charakteristika selenidového zrudneni na uranových ložiskách Českého masivu. Pp. 89-95 in: Mineralogia uránových a s nimi súvisiacích nerastných surovín.Sborník Spišská Nová Ves, Slovenia.Google Scholar
Litochleb, J., Šrein, V., Novická, Z. and Šreinová B. (1999) Selenidy z uranového ložiska Ústaleč (jzČechy). Bulletin mineralogicko — petrologického oddeleni Národního Muzea, 7, 98108.Google Scholar
Makovicky, E. and Karup-Møller, S. (1994) Exploratory studies on substitution of minor elements on sythetic tetrahedrite. Part I. Substitution by Fe, Zn, Co, Ni, Mn, Cr, Vand Pb. Unit-cell parameter changes on substitution and the structural role of “Cu2+. Neues Jahrbuch für Mineralogie, Abhandlungen, 167, 89123.Google Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.J., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Møller, S., Balic-Žunic, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Suphosalts systematics: a review. Report of the suphosalt sub-comittee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 746.Google Scholar
Ondruš, P. (1995) ZDS - software for analysis of X-ray powder diffraction patterns. Version 6.01. Useŕs Guide.Prague.Google Scholar
Paar, W.H., Topa, D., Roberts, A.C., Criddle, A.J., Amann, G. and Sureda, R.J. (2002) The new mineral species brodtkorbite, Cu2HgSe2, and the associated selenide assemblage from Tuminico, Sierra de Cacho, La Rioja, Argentina. The Canadian Mineralogist, 40, 225237.CrossRefGoogle Scholar
Palatinus, L. (2011) PETS- program for analysis ofelectron diffraction data.Institute of Physics of the ASCR, Prague.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip — a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Palatinus, L. and van der Lee, A. (2008) Symmetry determination following structure solution in P1. Journal of Applied Crystallography, 41, 975—984CrossRefGoogle Scholar
Petricek, V., Dušek M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Pouchou, J.L. and Pichoir, F (1985) “PAP” (jρZ) procedure for improved quantitative microanalysis. Pp. 104—106 in: Microbeam Analysis, (J.T Armstrong, editor). San Francisco Press San Francisco.Google Scholar
Scharmová, M. and Scharm, B. (1995) Minerály selenuna uranovém ložisku Zadní Chodov. Bulletin mineralogicko —petrologického oddeleni Národního Muzea, 3, 4347.Google Scholar
Sejkora, J., Macek, I., Škácha, P., Pauliš, P., Plášil, J. and Toegel, V (2014) Vý skyt asociace Hg a Tl selenidů na opustenem uranovém ložisku Zálesí v Rychlebských horách (Česká republika). Bulletin mineralogicko -petrologického oddeleni Národního Muzea, 22, 333345.Google Scholar
Shannon, R.D. (1981) Bond distances in sulphides and a preliminary table of sulphide crystal radii. Structure and Bonding in Crystals, 2, 53—70.CrossRefGoogle Scholar
Simon, G., Kesler, S.E. and Essene, E.J. (1997) Phase relations among selenides, suphides, tellurides, and oxides: II. Applications to selenide-bearing ore deposits. Economic Geology, 92, 468—484.CrossRefGoogle Scholar
Škácha, P., Sejkora, J., Knížek, F., Slepička, V., Litochleb, J. and Jebavá, I. (2012) Výskyty unikátního monometalického stríbrného zrudneni na žíle H14F3 mezi 7. a 9. patrem šachty č. 21 Háje, príbramský uran-polymetalický revír (Česká republika). Bulletin mineralogicko-petrologického oddeleni, 20, 230—254.Google Scholar
Škácha, P., Plášil, J. Sejkora, J. and Golias, Y (2015) Suphur-rich antimonselite, Sb2(Se,S)3 in the Se-bearing mineral association from the uranium and base metal ore district Príbram, Czech Republic. Journal ofGeosciences, 60, 23—29.CrossRefGoogle Scholar
Yvon, K., Jeitschko, W. and Parthé, E. (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. Journal of Applied Crystalography, 10, 7374.CrossRefGoogle Scholar
Žák, K. and Dobeš, P. (1991) Stable isotopes and fluid inclusions in hydrothermal deposits: the Príbram ore region. Rozpravy Československé akademie ved, Rada Matematických a Prírodních Ved, 101, 1—109.Google Scholar