Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T03:03:26.499Z Has data issue: false hasContentIssue false

The halotrichite group: the crystal structure of apjohnite

Published online by Cambridge University Press:  05 July 2018

S. Menchetti
Affiliation:
Centro di Studio per la Mineralogia e la Geochimica dei Sedimenti, Istituto di Mineralogia dell'Università di Firenze, Italy
C. Sabelli
Affiliation:
Centro di Studio per la Mineralogia e la Geochimica dei Sedimenti, Istituto di Mineralogia dell'Università di Firenze, Italy

Summary

Apjohnite, MnAl2(SO4)4·22H2O, is monoclinic, space group P21/c, a 6·198 (2), b 24·347 (4), c 21·266 (4) Å, β 100·28 (3)° and Z = 4. The crystal structure was determined by means of direct methods applied to X-ray data collected with a single-crystal diffractometer. At the end of the refinement, performed with least-squares method, the R index was 0·039.

The SO4 tetrahedra, Al(H2O)5 octahedra, and MnO(H2O)5 octahedra are connected by a hydrogen bonding system; the only direct connection between polyhedra is by sharing of an oxygen between S(4) and Mn. In the asymmetric unit there are twenty-two water molecules, five of which lie in channels of the structure and are not linked to the cations but only to ligand water oxygens by means of hydrogen bonds.

Powder data indicate a close structural relationship between apjohnite, halotrichite, and pickeringite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandy, (M. C.), 1938. Amer. Min. 23, 724-9.Google Scholar
Brown, (I. D.) and Shannon, (R. D.), 1973. Acta Cryst. A 29, 266-82.CrossRefGoogle Scholar
Cromer, (D. T.) and Liberman, (D.), 1970. Journ. Chem. Phys. 53, 1891-8.CrossRefGoogle Scholar
Cromer, (D. T.) and Waber, (J. T.), 1965. Acta Cryst. 18, 104-9.CrossRefGoogle Scholar
Faneani, (L.), Nunzi, (A.), and Zanazzi, (P. F.), 1970. Amer. Min. 55, 78-89.Google Scholar
Germain, (G.), Main, (P.), and Wooleson, (M. M.), 1971. Acta Cryst. A 27, 368-76.CrossRefGoogle Scholar
Giacovazzo, (C.), Menchetti, (S.), and Scordari, (F.), 1970. Accad. Naz. Lincei Rend. Sc. fis. mat. nat. 49, 129-40.Google Scholar
Gordon, (S. G.), 1942. Notulae Naturae, Acad. Sci. Philadelphia, 101, 1-9.Google Scholar
Hamilton, (W. C.), 1959. ,4cta Cryst. 12, 609-10.CrossRefGoogle Scholar
International Tables for X-Ray Crystallography, 1962, 3, 258-74.Google Scholar
JCPDS (Joint Committee on Powder Diffraction Standards), 1971. Inorganic Index to the Powder Diffraction File. Pennsylvania.Google Scholar
Meixner, (H.) and Pillewizer, (W.), 1937. Zentr. Min., Abt. A, 263-70.Google Scholar
Menchetti, (S.) and Sabelli, (C.), 1973. Acta Cryst. B 29, 2541-8.CrossRefGoogle Scholar
Menchetti, (S.) and Sabelli, (C.), 1974. Tschermaks Min. Petr. Mitt. 21, 164-78.CrossRefGoogle Scholar
Palache, (C.), Berman, (H.), and Frondel, (C.), 1951. Dana's System of Mineralogy, 2, 522-9, New York (Wiley).Google Scholar
Stewart, (R. F.), Davidson, (E. R.), and Simpson, (W. T.), 1965. Journ. Chem. Phys. 42, 3175-87.CrossRefGoogle Scholar