Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T07:19:33.388Z Has data issue: false hasContentIssue false

H-bonding scheme in allactite: a combined single-crystal X-ray and neutron diffraction, optical absorption spectroscopy, FTIR and EPMA-WDS study

Published online by Cambridge University Press:  02 January 2018

G. Diego Gatta*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy CNR – Istituto di Cristallografia, Sede di Bari, Via G. Amendola 122/o, I-70126 Bari, Italy
Ferdinando Bosi
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy CNR – Istituto di Geoscienze e Georisorse, UOS Roma, P.le Aldo Moro 5, 00185 Roma, Italy
Maria Teresa Fernandez Diaz
Affiliation:
Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9, France
Ulf Hålenius
Affiliation:
Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden

Absatract

The crystal chemistry of allactite from Långban, Värmland (Sweden) was investigated by single-crystal X-ray and neutron diffraction, optical absorption spectroscopy, Fourier-transform infra-red spectroscopy (FTIR) and electron microprobe analysis by wavelength-dispersive spectroscopy (EPMA-WDS). The optical spectra indicate the presence of Mn in valence state 2+ only. Assuming 16 O atoms per formula unit, arsenic as As5+ and the (OH) content calculated by charge balance, the resulting formula based on the EPMA-WDS data is (Mn2+ 6.73Ca0.13Mg0.12Zn0.02)∑7.00(As5+)2.00O16H8, very close to the ideal composition Mn7(AsO4)2(OH)8. In the unpolarized FTIR spectrum of allactite, fundamental (OH)-stretching bands are observed at 3236, 3288, 3387, 3446, 3484, 3562 and 3570 cm–1, suggesting that a number of OH environments, with different hydrogen bond strengths, occur in the structure. The neutron structure refinement shows that four independent H sites occur in allactite with full site occupancy, all as members of hydroxyl groups. The complex hydrogen-bonding scheme in the allactite structure is now well defined, with at least nine hydrogen bonds energetically favourable with mono-, bi- and trifurcated configurations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, I.D. and Shannon, R.D. (1973) Empirical bond-strength-bond-length curves for oxide. Acta Crystallographica, A29, 266282.CrossRefGoogle Scholar
Brugger, J., Elliott, P., Meisser, N. and Ansermet, S. (2011) Argandite, Mn7(VO4)2(OH)8, the V analogue of allactite from the metamorphosed Mn ores at Pipji, Turtmann Valley, Switzerland. American Mineralogist, 96, 18941900.CrossRefGoogle Scholar
Bruker, (2008) APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory (2nd edition). Cambridge University Press, Cambridge, UK.Google Scholar
Busing, W.R. and Levy, H.A. (1964) The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta Crystallographica, 17, 142146.CrossRefGoogle Scholar
Chopin, C., Ferraris, G., Prencipe, M., Brunet, F. and Medenbach, O. (2001) Raadeite, Mg7(PO4)2(OH)8: a new dense-packed phosphate from Modum (Norway). European Journal of Mineralogy, 13, 319—327.Google Scholar
Coppens, P., Leiserowitz, L. and Rabinovich, D. (1965) Calculation of absorption corrections for camera and diffractometer data. Acta Crystallographica, 18, 10351038.CrossRefGoogle Scholar
Dunn, P.J. (1983) Allactite from Franklin and Sterling Hill, New Jersey. Mineralogical Record, 14, 251—252.Google Scholar
Frost, R.L. and Weier, M. (2006) Raman and infrared spectroscopy of the manganese arsenate mineral allactite. Spectrochimica Acta, 65A, 623627.CrossRefGoogle Scholar
Hålenius, U., Bosi, F. and Skogby, H. (2007) Galaxite, MnAl2O4, a spectroscopic standard for tetrahedrally coordinated Mn + in oxygen-based mineral structures. American Mineralogist, 92, 1225—1231.CrossRefGoogle Scholar
Holtstam, D. and Langhof, J. (editors) (1999) Långban, the Mines, Their Minerals, History and Explorers Raster Förlag, Stockholm.Google Scholar
Howard, J.A.K.., Johnson, O., Schultz, A.J. and Stringer, A.M. (1987) Determination of the neutron absorption cross section for hydrogen as a function of wavelength with a pulsed neutron source. Journal of Applied Crystallography, 20, 120122.CrossRefGoogle Scholar
Larson, A.C. (1967) Inclusion of secondary extinction in least-squares calculations. Acta Crystallographica, 23, 664665.CrossRefGoogle Scholar
Lehmann, M.S., Kuhs, W., McIntyre, G.J., Wilkinson, C. and Allibon, J. (1989) On the use of a small two-dimensional position-sensitive detector in neutron diffraction. Journal of Applied Crystallography, 22, 562568.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H—O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Lohr, L.L. and McClure, D.S. (1968) Optical spectra of divalent manganese salts II. The effect of interionic coupling on absorption strength. Journal of Chemical Physics, 49, 35163521.CrossRefGoogle Scholar
Moore, P.B. (1968) Crystal chemistry of the basic manganese arsenate minerals: II. The crystal structure of allactite. American Mineralogist, 53, 733—741.Google Scholar
Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 13—36.Google Scholar
Sears, V.F. (1986) Neutron scattering lengths and crosssections. Pp. 521–550 in: Neutron Scattering, Methods of Experimental Physics (Sköld, K. and Price, D.L., editors). 23A. Academic Press, New York. Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.CrossRefGoogle Scholar
Sjögren, A. (1884a) Allaktit, ett nytt manganarseniat från Mossgrufvan Å Nordmarksfältet. Geologiska Föreningens i Stockholm Förhandlingar, 7, 109-111.CrossRefGoogle Scholar
Sjögren, A. (1884b) Kristallografiska studier: VII Allaktit från Nordmarken. Geologiska Föreningens i Stockholm Förhandlingar, 7, 220-236.CrossRefGoogle Scholar
Welin, E. (1968) Notes on the mineralogy of Sweden 6. X-ray powder data for minerals from Långban and the related mineral deposits of Central Sweden. Arkiv för Mineralogi och Geologi, 4(30), 499541.Google Scholar
Wilkinson, C., Khamis, H.W., Stansfield, R.F.D.. and McIntyre, G.J. (1988) Integration of single-crystal reflections using area multidetectors. Journal of Applied Crystallography, 21, 471-478.CrossRefGoogle Scholar
Wilson, A.J.C.. and Prince, E. (1999) International Tables for Crystallography Vol. C, Mathematical, Physical and Chemical Tables, second edition. Kluwer, Dordrecht, The Netherlands.Google Scholar
Wright, S.E., Foley, J.A. and Hughes, J.M. (2000) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist, 85, 524-531.CrossRefGoogle Scholar
Supplementary material: File

Gatta et al. supplementary material

X-ray 293 K cif

Download Gatta et al. supplementary material(File)
File 14.6 KB
Supplementary material: File

Gatta et al. supplementary material

neutron 293 K cif

Download Gatta et al. supplementary material(File)
File 35.8 KB
Supplementary material: File

Gatta et al. supplementary material

neutron 100 K cif

Download Gatta et al. supplementary material(File)
File 35.7 KB