Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T07:51:05.835Z Has data issue: false hasContentIssue false

The high-pressure monazite-to-scheelite transformation in CaSeO4

Published online by Cambridge University Press:  05 July 2018

W. A. Crichton*
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
M. Merlini
Affiliation:
Dipartimento di Scienze dalla Terra ‘‘Ardito Desio’’, Università degli Studi di Milano, via Mangiagalli 34, 20133 Milano, Italy
H. Müller
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
J. Chantel
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
M. Hanfland
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
*

Abstract

The high-pressure monazite – scheelite structure transition has been observed at P >4.57 GPa in CaSeO4 by synchrotron X-ray powder diffraction. It is a first-order transition with a 4.5% volume change and is severely hindered kinetically. Scheelite-type CaSeO4 remains to a maximum experimental pressure of 42.2 GPa and no (002) reflection, specifically indicative of a subgroup transition to a fergusonite-type structure, is observed. Scheelite-type CaSeO4 remains at ambient conditions, where the tetragonal unit cell has parameters of a = 5.04801(11) c = 11.6644(5) Å and V = 297.21(3) Å3 with Dcalc = 4.090 g cm–3. The diffraction pattern of the recovered material was refined in space group I41/a to Rp = 0.98%, wRp = 1.91%, GoF = 0.59, RFobs = 5.04%, wRFobs = 4.27%. The oxygen is located on the general 16f site at (0.2578(8) 0.3699(14) 0.5755(4)) and shares four identical bonds with Se (4a: ½ ½ ½) at 1.644(5) Å. The Ca (4b: 0, 0, ½) is eight-coordinated via O at 4 × 2.440(6) Å and 4 × 2.504(5) Å. This is further evidence of the dissimilarity of sulfate and selenate at high pressure and temperature conditions and the closer resemblance of the selenates to the orthophosphates, arsenates and vanadates, where this type of transition sequence has been described.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Burla, M.C., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C, Guagliardi, A., Moliterni, A.G.G., Polidori, G. and Rizzi, R. (1999) EXPO: a program for full pattern decomposition and structure solution. Journal of Applied Crystallography, 32, 339340.CrossRefGoogle Scholar
Bastide, J.P. (1987) Simplified systematics of the compounds ABX4 (X= O2—, F—) and possible evolution of their crystal structures under pressure. Journal of Solid State Chemistry, 71, 115120.CrossRefGoogle Scholar
Borg, I.Y. and Smith, D.K. (1975) High-pressure polymorph of CaSO4 . Contributions to Mineralogy and Petrology, 50, 127133.CrossRefGoogle Scholar
Bradbury, S.E. and Williams, Q. (2009) X-ray diffraction and infrared spectroscopy of monazite-structured CaSO4 at high-pressures: implications for shocked anhydrite. Journal of Physics and Chemistry of Solids, 70, 134141.CrossRefGoogle Scholar
Clavier, N., Podor, R. and Dacheux, N. (2011) Crystal chemistry of the monazite structure. Journal of the European Ceramic Society, 31, 941976.CrossRefGoogle Scholar
Crichton, W.A., and Grzechnik, A. (2004) Crystal structure of calcium molybdate, CaMoO4, a schee-lite-type to fergusonite-type transition in powellite a. P > 15 GPa. Zeitschrift fur Kristallographie—New Crystal Structures, 219, 337338.Google Scholar
Crichton, W.A., Parise, J.B., Antao, S.M. and Grzechnik, A. (2005) Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures in CaSO4 at high pressure and temperature. American Mineralogist, 90, 2227.CrossRefGoogle Scholar
Crichton, W.A., Bouvier, P., Winkler, B. and Grzechnik, A. (2009) The structural behaviour of LaF3 at high pressures. Dalton Transactions, 39, 43024311.CrossRefGoogle Scholar
Crichton, W.A., Miiller, H., Merlini, M., Roth, T. and Detlefs, C. (2010) Monazite structure from dehy-drated CaSeO4-2H2O. Mineralogical Magazine, 74, 127139.CrossRefGoogle Scholar
Crichton, W.A., Merlini, M., Hanfland, M. and Miiller, H. (2011) The crystal structure of barite, BaSO4, at high pressure. American Mineralogist, 96, 364367.CrossRefGoogle Scholar
Effenberger, H. and Pertlik, F. (1986) 4 monazite type structures—comparison of SrCrO4, SrSeO4, PbCrO4(crocoite), and PbSeO4 . Zeitschrift fur Kristallographie, 176, 7583.CrossRefGoogle Scholar
Errandonea, D., Kumar, R.S., Achary, S.N. and A.K. Tyagi (2011) In situ high-pressure synchrotron X-ray diffraction study of CeVO4 and TbVO4 up to 50 GPa. Physical Review B, 84, 224-141.CrossRefGoogle Scholar
Forman, R.A., Block, S., Barnett, J.D. and Piermarini, G.J. (1972) Pressure measurement by utilization of ruby sharp-line luminescence. Science, 176, 284285.CrossRefGoogle ScholarPubMed
Fujita, T., Kawada, I. and Kato, K. (1977) Raspite from Broken Hil. Acta Crystollagraphica Section B: Structural Science, 33, 162164.CrossRefGoogle Scholar
Fukunaga, O. and Yamaoka, S. (1979) Phase transitions in ABO4-type compounds under high-pressure. Physics and Chemistry of Minerals, 5, 167177.CrossRefGoogle Scholar
Gracia, L., Beltran, A., Errandonea, D. and Andres, J. (2012) CaSO4 and its pressure-induced phase transitions: a density functional theory study. Inorganic Chemistry, 51, 17511759 CrossRefGoogle ScholarPubMed
Grzechnik, A., Crichton, W.A., Hanfland, M. and van Smallen, S. (2003) Scheelite CaWO4 at high pressures. Journal of Physics: Condensed Matter, 15, 72617270.Google Scholar
Grzechnik, A., Crichton, W.A., Bouvier, P., Dmitriev, V., Weber, H.P. and Gesland, J.Y. (2004) Decomposition of LiGdF4 scheelite at high pressures. Journal of Physics: Condensed Matter, 16, 77797786.Google Scholar
Grzechnik, A., Friese, K., Dmitriev, V., Weber, H.P., Gesland, J.Y. and Crichton, WA. (2005) Pressure-induced tricritical phase transition from the scheelite to the fergusonite structure in LiLuF4 . Journal of Physics: Condensed Matter, 17, 763777.Google Scholar
Hammersley, A.P., Svensson, S.O. and Thompson, A. (1994) Calibration and correction of spatial distortions in 2D detector systems. Nuclear Instruments and Methods in Physics Research Section A, 346, 312321.CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N. and Hausermann, D. (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Pressure Research, 14, 235248.CrossRefGoogle Scholar
Hazen, RM. and Finger, L.W. (1982) Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure. John Wiley & Sons, London, 231 pp.Google Scholar
Hottentot, D. and Loopstra, B.O. (1979) Crystal structures of calcium tellurate, CaTeO4, and strontium tellurate, SrTeO4 . Acta Crystallographica Section B: Structural Science, 35, 728729.CrossRefGoogle Scholar
Huang, T, Lee, J.S., Kung, J. and Lin, CM. (2010) Study of monazite under pressure. Solid State Communications, 150, 3738.Google Scholar
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.CrossRefGoogle Scholar
Lee, P.L., Huang, E., and Yu, S.C. (2001) Phase diagram and equations of state of BaSO4 . High Pressure Research, 21, 6771.CrossRefGoogle Scholar
Lipp, C. and Schleid, T. (2008) Orthorhombisches Sr[SeO3]. Zeitschrift fur Anorganisches und Allgemeine Chemie, 634, 20602060.CrossRefGoogle Scholar
Liu, L.-G (1979) High-pressure phase-transformations in baddelyite and zircon, with geophysical implications. Earth and Planetary Science Letters, 44, 390396.CrossRefGoogle Scholar
Liu, L.-G. and Bassett, W.A. (1986) Oxford Monographs on Geology and Geophysics No. 4. Oxford University Press, New York Google Scholar
Long, Y.W., Yang, L.X., You, S.J., Yu, Y., Yu, R.C., Jin, C.Q. and Liu, J. (2006) Crystal structural phase transition in CaCrO4 under pressure. Journal of Physics: Condensed Matter, 18, 24212428.Google Scholar
Ma, Y.M., Zhou, Q., He, Z., Li, F.F., Yang, K.F., Cui, Q.L. and Zou, G.T. (2007) High-pressure and high-temperature study of the phase transition in anhydrite. Journal of Physics: Condensed Matter, 19, 425-221.CrossRefGoogle Scholar
Marques, M., Contreras-Garcia, J., Florez, M. and Recio, J.M. (2009) On the mechanism of the zircon—scheelite pressure induced transformation. Journal of Physics and Chemistry of Solids, 69, 22772280.CrossRefGoogle Scholar
Muller, O., White, W.B., and Roy, R. (1969) X-ray diffraction of chromates of nickel, magnesium and cadmium. Zeitschrift fur Kristallographie, 130, 112120.CrossRefGoogle Scholar
Petricek, V., Duskek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip- a computer program for the solution of crystal structures using charge flipping in arbitrary space. Journal of Applied Crystallography, 40, 786790.CrossRefGoogle Scholar
Pistorius, C.W.F.T., and Pistorius, M.C. (1962) Lattice constants and thermal-expansion properties of the chromates and selenates of lead, strontium and barium. Zeitschrift fur Kristallographie, 117, 259271.CrossRefGoogle Scholar
Pistorius, C.W.F.T., Boeyens, J.C.A. and Clark, J.B. (1969) Phase diagram of NaBaF4 and NaClO4 to 40 kbar and the crystal-chemical relationship between the structures CaSO4, AgMnO4, BaSO4 and high-NaClO4 . High Temperature—High Pressure, 1, 4152.Google Scholar
Reid, A.F. and Ringwood, A.E. (1969) Newly observed high pressure phase transformations in Mn3O4, CaAl2O4, and ZrSiO4 . Earth and Planetary Science Letters, 6, 205208.CrossRefGoogle Scholar
Santamaria-Perez, D., Gracia, L., Garbarino, G, Beltran, A., Chulia-Jordan, R, Gomis, O., Errandonea, D., Ferrer-Roca, Ch., Martinez-Garcia, D. and Segura, A. (2011) High-pressure study of the behaviour of the mineral barite by X-ray diffraction. Physical Review B, 84, 054102.CrossRefGoogle Scholar
Snyman, H.C. and Pistorius, C.W.F.T. (1963) Some crystallographic properties of CaSeO4 and its hydrates. Zeitschrift fur Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 119, 151154.CrossRefGoogle Scholar
Stephens, D.R. (1964) Hydrostatic compression of 8 rocks. Journal of Geophysical Research, 69, 29672978.CrossRefGoogle Scholar
Wildner, M. and Giester, G (2007) Crystal structures of SrSeO3 and CaSeO3 and their respective relationships with molybdomenite-and monazite-type compounds—an example for the stereochemical equivalence of ESeO3 (E = lone electron pair) with tetrahedral TO4 groups. Neues Jahrbuch fur Mineralogie, 184, 2937.CrossRefGoogle Scholar