Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-06T00:33:33.017Z Has data issue: false hasContentIssue false

A high-temperature X-ray study of the equilibrium forms of albite

Published online by Cambridge University Press:  05 July 2018

H. D. Grundy
Affiliation:
University of Manchester
W. L. Brown
Affiliation:
University of Manchester

Summary

Complete lattice parameters have been determined at a series of temperatures up to 950 °C using a furnace on a powder diffractometer for six synthetic supposed equilibrium albites, a nonequilibrium albite, two natural albites, and a heat-treated natural albite. The supposed equilibrium albites were prepared hydrothermally by MacKenzie (1957) for long periods of time and reached or nearly reached a state of no further change at their temperatures of synthesis between 500 and 1000 °C. A crystal of natural albite and three crystals of heat-treated natural albite were studied by high-temperature, single-crystal methods on a Buerger precession camera up to 1000 °C for comparison.

The lattice angles for each albite decrease smoothly with increasing temperature; the a-axis and the volume increase smoothly with increasing temperature. The rates of change increase with increasing temperature. The c and in some cases the b-axes appear to decrease initially in the range 25–300 °C and then subsequently increase. The thermal dilatation is highly anisotropic—the change in a is about twice that in b and about six times that in c over the whole range 25–850 °C. The effect of a temperature rise on the lattice parameters of the albites is very similar to the effect of the substitution of potassium on the room-temperature parameters.

Plots of α* against γ* for each albite at a sequence of temperatures up to 950 °C fall on nearly straight parallel lines, all albites becoming less oblique (triclinic) with increasing temperature. Of the equilibrium albites, only the one synthesized at 1000°C becomes monoclinic below the melting point. The ratio d010/d001 or c*/b* is a measure of order in the albites and does not vary with temperature. The similar behaviours of this ratio and of other lattice parameters as a function of the temperature of synthesis confirms the two-step ordering process in albite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present addresses: Department of Geology, McMaster University, Hamilton, Ontario, Canada, and Laboratoire de Minéralogie et Cristallographie, 9 Quai St. Bernard, Paris 5e, France.

References

Bambauer, (H. U.), Eberhard, (E.), and Viswanathan, (K.), 1967 . Sehweiz. Min. Petr. Mitt. 47, 351-64.Google Scholar
Baskin, (Y.), 1956. Journ. Geol. 64, 132-55.10.1086/626330CrossRefGoogle Scholar
Brown, (W. L.), 1960. Zeits. Krist. 113, 297-329.10.1524/zkri.1960.113.1-6.297CrossRefGoogle Scholar
Brown, (W. L.), 1962. Norsk Geol. Tidsskr. 42, 354-82.Google Scholar
Brown, (W. L.), 1967. Mitt. Mag. 36, 80-2.Google Scholar
Brown, (W. L.) and Grunoy, (H. D.), in preparation.Google Scholar
Campbell, (W. J.), 1962. U.S. Bur. Mines Rept. Inv. 611 5.Google Scholar
Cole, (W. F.), Sørum, (H.), and Kennard, (O.), 1949. Acta Cryst. 2, 280-7.10.1107/S0365110X49000734CrossRefGoogle Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1963. Rock-forming Minerals, vol. 4. London (Longmans).Google Scholar
Dietz, (E. D.), 1965. A study of the superheating of an albite feldspar. Ph.D. thesis, Ohio State University.Google Scholar
Eberhard, (E.), 1967. Sehweiz. Mitt. Petr. Mitt. 47, 385-98.Google Scholar
Ferguson, (R. B.), Traill, (R. J.), and Taylor, (W. H.), 1958. Acta Cryst. 11, 331-48.10.1107/S0365110X5800092XCrossRefGoogle Scholar
Fizeau, (H.), 1868. Compt. Rend. Aead. Sci. Paris, 66, 1072-86.Google Scholar
Grundy, (H. D.) and Brown, (W. L.), 1967. Schweiz. Mitt. Petr. Mitt. 47, 21-30.Google Scholar
Grundy, (H. D.) and Brown, (W. L.), in preparation.Google Scholar
Grundy, (H. D.), Brown, (W. L.), and MacKenzie, (W. S.), 1967. Mitt. Mag. 36, 83-8.Google Scholar
Gubser, (R.) and Laves, (F.), 1967. Sehweiz. Mitt. Petr. Mitt. 47, 177-88.Google Scholar
Jones, (J. B.), 1966. Nature, 210, 1352-3.10.1038/2101352a0CrossRefGoogle Scholar
Kayode, (A. A.), 1964. Thermal expansion and the effect of temperature on the angle of the rhombic section of the plagioclase feldspars. Ph.D. thesis, University of Chicago.Google Scholar
Keith, (M. L.) and TuTtle, (O. F.), 1952. Amer. Journ. Sci., Bowen vol. 203-80.Google Scholar
Kozu, (S.) and Ueda, (J.), 1933. Proc. Imp. Acad. Tokyo, 9, 262 4.10.2183/pjab1912.9.262CrossRefGoogle Scholar
Kracek, (F. C.) and Neuvonen, (K. J.), 1952. Ibid. 293-318.Google Scholar
Laves, (F.), 1960. Zeits. Krist. 113, 265-95.10.1524/zkri.1960.113.1-6.265CrossRefGoogle Scholar
McConnell, (J. D. C.) and McKie, (D.), 1960. Min. Mag. 32, 436-54.Google Scholar
MacKenzie, (W. S.), 1957. Amer. Journ. Sei. 255, 481-516.Google Scholar
MacKenzie, (W. S.) and Smith, (J. V.), 1955. Amer. Min. 40, 707-32.Google Scholar
MacKenzie, (W. S.) and Smith, (J. V.), 1962. Norsk Geol. TMsskr. 42, 72-103.Google Scholar
Mügge, (O.), 1930. Zeits. Krist. 75, 337-44 [M.A. 4-512].Google Scholar
Orville, (P. M.), 1967. Amer. Mitt. 52, 55-86.Google Scholar
Saucier, (H.) and Saplevitch, (A.), 1962. Norsk Geol. Tidsskr. 42, 224-43.Google Scholar
Schneider, (T. R.), 1957. Zeits. Krist. 109, 245-71.10.1524/zkri.1957.109.1-6.245CrossRefGoogle Scholar
Skinner, (B. J.), Stewart, (D. B.), and Morcenstern, (J. C.), 1962. Amer. Min. 47, 962-7.Google Scholar
Smith, (J. V.), 1956. Min. Mag. 31, 47-68.Google Scholar
Smith, (J. V.), 1958. Ibid. 914-28.Google Scholar
Stewart, (D. B.) and Von Limbach, (Dora), 1967. Artier. Mitt. 52, 389-413.Google Scholar
Stewart, (D. B.), Walker, (G. W.), Wright, (T. L.), and Fahey, (J. J.), 1966. Ibid. 51, 177-97.Google Scholar
Taylor, (D.), 1968. Mitt. Mag. 36, 761-9.Google Scholar
Wright, (T. L.), 1964. Trans. Amer. Geophys. Union, 45, 127.Google Scholar
Wright, (T. L.) and Stewart, (D. B.), 1968. Amer. Min. 53, 38-87.Google Scholar
Yoder, (H. S.) and Weir, (C. E.), 1951. Amer. Journ. Sci. 249, 683-94.10.2475/ajs.249.9.683CrossRefGoogle Scholar