Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T11:18:50.211Z Has data issue: false hasContentIssue false

Hollandite in Hawaiian basalt: a relocation site for weathering-mobilized elements

Published online by Cambridge University Press:  05 July 2018

R. V. Fodor
Affiliation:
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695 USA
R. S. Jacobs
Affiliation:
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695 USA
G. R. Bauer
Affiliation:
Department of Land and Natural Resources, Honolulu, HI 96813, USA

Abstract

Enrichments in Ba, REE and Y abundances, occurrences of REE, Y-bearing phosphate, depletions in K and Rb, and negative Ce anomalies in some lavas on Kahoolawe (Hawaii) reflect secondary mobilization of Ba, REE, Y, K and Rb. Hollandite (Ba-Mn-oxide) in the groundmass of a Kahoolawe lava contains nearly 10 wt.% BaO, ∼ 1.1 wt.% CeO2, and small amounts of La, Nd, Y, K, Na, P, Cl and Cu to provide an example of where elements mobilized during weathering processes on the Hawaiian Islands find residence. Fe-vernadite, a second Mn-oxide, also hosts mobilized REE and Ba. A positive Ce anomaly in the hollandite complements the negative Ce anomaly in some Kahoolawe lavas, this is analogous to Ce accumulation in todorokite of manganese nodules complementing Ce-depleted seawater. Mn-oxides, then, can serve as links between lavas depleted and enriched in certain elements.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present Address: Bass Enterprises Production, Ft. Worth, TX 76102, USA.

References

Bish, D. L. and Post, J. E. (1989) Thermal behavior of complex, tunnel-structure manganese oxides. Amer. Mineral., 74, 177–86.Google Scholar
Bolten, B. R., Exon, N. F., Ostwald, J. and Kudrass, H. R. (1988) Geochemistry of ferromanganese crust and nodules from the South Tasmania rise, southeast of Australia. Marine Geol., 84, 53–80.CrossRefGoogle Scholar
Braun, J. J., Pagel, M., Muller, J. P., Bilong, P., Michard, A. and Guillet, B. (1990) Cerium anomalies in lateritic profiles. Geochim. Cosmo-chim. Ada, 54, 781–195.CrossRefGoogle Scholar
Buckley, A. (1989) An electron microprobe investiga-tion of the chemistry of ferromanganese coatings of freshwater sediments. Geochim. Cosmochim. Ada, S3, 115-24.CrossRefGoogle Scholar
Budahn, J. R. and Schmitt, R. A. (1985) Petrogenetic modeling of Hawaiian tholejitic basalts: a geo-chemical approach. Geochim. Cosmochim. Ada, 49, 67–87.CrossRefGoogle Scholar
Burns, R. G., Burns, V. M. and Stockman, H. W. (1983) A review of the todorokite-buserite problem: implications to the mineralogy of marine manganese nodules. Amer. Mineral, 68, 972–80.Google Scholar
Bystrom, A. and Bystrom, A. M. (1950) The crystal structure of hollandite, the related manganese oxide minerals, and 5-MnO2 . Ada Cryst., 3, 146–54.CrossRefGoogle Scholar
Chen, C. Y. and Frey, F. A. (1985) Trace element and isotopic geochemistry of lavas from Haleakala volcano, East Maui, Hawaii: implications for the origin of Hawaiian basalts. J. Geophys. Res., 90, 8743–68.CrossRefGoogle Scholar
Clague, D. A. (1987) Petrology of West Molokai volcano. Goel. Soc. Amer. Prog, (abstracts), 19, 366.Google Scholar
Elderfield, H., Hawkesworth, C. J., Graeves. M. J. and Calvert, S. E. (1981) Rare-earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim. Cosmochim. Ada, 45, 513–28.CrossRefGoogle Scholar
Feigensen, M. D., Hofmann, A. W. and Spera, F. J. (1983) Case studies on the origin of basalt II. The transition from tholeiitic to alkalic volcanism on Kohala volcano, Hawaii. Contrib. Mineral. Petrol, 84, 390–405.Google Scholar
Fleet, A. J. (1984) Aqueous and sedimentary geochemistry of the rare earth elements. In: Rare-Earth Element Geochemistry (P. Henderson, ed.), Amsterdam, Elsevier, pp. 343—373.Google Scholar
Fodor, R. V., Malta, D. P., Bauer, G. R. and Jacobs, R. S. (1989) Microbeam analyses of rare-earth element phosphate in basalt from Kahoolawe Island, Hawaii. In: Proceedings of the 24th Annual Conference, Microbeam Analytical Society, (P. E. Russell, ed.) San Francisco Press, San Francisco, pp.554-8.Google Scholar
Fodor, R. V., Frey, F. A., Bauer, G. R. and Clague, D. A. (1992a) Ages, rare-earth element enrichment, and petrogenesis of tholeiitic and alkalic basalts from Kahoolawe Island, Hawaii. Contrib. Mineral Petrol., 110, 442–62.CrossRefGoogle Scholar
Fodor, R. V., Dobosi, G. and Bauer, G. R. (1992a) Anomalously high rare-earth element abundances in Hawaiian lavas. Anal. Chem., 64, 639A643A.Google Scholar
Frey, F. A., Wise, W. S., Garcia, M. O., West, H., Kwon, S. T. and Kennedy, A. (1990) Evolution of Mauna Kea volcano, Hawaii: petrologic and geochemical constraints on postshield volcanism. J. Geophys. Res., 95, 1271–300.CrossRefGoogle Scholar
Frakes, L., Bolten, B. (1992) Effects of ocean chemistry, sea levels, and climate on the formation of primary sedimentary manganese ore deposits. Econ. Geol, 87, 1207–17.CrossRefGoogle Scholar
Hem, J. D. (1972) Chemical factors that influence the availability of iron and manganese in aqueous systems. Geol. Soc. Amer. Bull., 83, 443–50.CrossRefGoogle Scholar
Lanphere, M. A. and Frey, F. A. (1987) Geochemical evolution of Kohala volcano, Hawaii. Contrib. Mineral. Petrol., 95, 100–113.CrossRefGoogle Scholar
Lottermoser, B. G. (1990) Rare-earth element mineralization within the Mt. Weld carbonatite laterite, western Australia. Lithos, 1A, 151-67.Google Scholar
Macdonald, G. A. (1940) Petrography of Kahoolawe. Hawaii Div. Hydrog. Bull, 6, 149–73.Google Scholar
Manceau, A., Gorshkov, A. I. and Drits, V. A. (1992) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: part II. Information from EXAFS spectroscopy and electron and x-ray diffraction. Amer. Mineral, 11, 1144-57.Google Scholar
Nicholson, K. (1992) Contrasting mineralogical-geochemical signatures of manganese oxides: guide to metallogenesis. Econ. Geol, 87, 1253–64.CrossRefGoogle Scholar
Ostwald, J. (1984) Ferruginous vernadite in an Indian Ocean ferromanganese nodule. Geol. Mag., 121, 483–8.CrossRefGoogle Scholar
Ostwald, J. (1992) Genesis and paragenesis of the tetravalent manganese oxides of the Australian continent. Econ. Geol, 87, 1237–52.CrossRefGoogle Scholar
Post, J. E. and Burnham, C. W. (1986) Modeling tunnel-cation displacements in hollandites using structure-energy calculations. Amer. Mineral, 71, 1178–85.Google Scholar
Post, J. E., Von Dreele, R. B. and Buseck P. R. (1982) Symmetry and cation displacements in hollandites: structure refinements of hollandite, crypto-melane and priderite. Ada Cryst., B38, 1056—65.Google Scholar
Price, R. C, Gray, C. M, Wilson, R. E., Frey, G. A. and Taylor, S. R. (1991) The effects of weathering on rare-earth element, Y and Ba abundances in Tertiary basalts from southeastern Australia. Chem. Geol, 93, 245–65.CrossRefGoogle Scholar
Rankin, R. C. and Childs, C. W. (1976) Rare-earth elements in iron-manganese concretions from some New Zealand soils. Chem. Geol, 18, 55–64.CrossRefGoogle Scholar
Roden, M. F., Frey, F. A. and Clague, D. A. (1984) Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii: implications for Hawaiian volcanism. Earth Plan. Sci. Lett., 69, 141–58.CrossRefGoogle Scholar
Stearns, H. T. (1940) Geology and groundwater resources of the islands of Lanai and Kahoolawe, Hawaii. Hawaii Hydrog. Bull, 6, 3–95 and 119-47.Google Scholar
Turner, S. and Buseck, P. R. (1979) Manganese oxide tunnel structures and their intergrowths. Science, 203, 456–8.CrossRefGoogle ScholarPubMed