Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:05:39.125Z Has data issue: false hasContentIssue false

Hyalotekite from reedmergnerite-bearing peralkaline pegmatite, Dara-i-Pioz, Tajikistan and from Mn skarn, Långban, Värmland, Sweden: a new look at an old mineral

Published online by Cambridge University Press:  05 July 2018

Edward S. Grew
Affiliation:
Department of Geological Sciences, 5711 Boardman Hall, University of Maine, Orono, Maine 04469-5711, U.S.A.
Martin G. Yates
Affiliation:
Department of Geological Sciences, 5711 Boardman Hall, University of Maine, Orono, Maine 04469-5711, U.S.A.
Dimitriy I. Belakovskiy
Affiliation:
A. E. Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt, 18(2), Moscow, Russia 117071
Roland C. Rouse
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1063, U.S.A.
Shu-Chun Su
Affiliation:
Hercules Inc. Research Center, Wilmington, Delaware 19894, U.S.A.
Nicholas Marquez
Affiliation:
Aerospace Corporation, PO Box 92957, Los Angeles, California 90009, U.S.A.

Abstract

In specimens of Mn skarn from the type locality of Långban, hyalotekite, (Ba,Pb,K)4Ca2(Si,B,Be)12O28F, occurs in a matrix consisting mostly of aegirine (⩽22 mol.% CaMnSi2O6), andradite (⩽27 mol.% Mn3Fe2Si3O12), hematite, pectolite, quartz, calcite, baryte, barylite, and hedyphane. Melanotekite, plumbian taramellite, ferrian K-feldspar (to 6.5 wt.% Fe2O3), rhodonite, a talc-like mineral, apophyllite, and several Pb-As-Sb-O minerals are found in trace amounts. In a single specimen of reedmergnerite-microcline pegmatite from Dara-i-Pioz, hyalotekite occurs in close association with microcline. Other accessory minerals are albite, aegirine, pyrochlore, eudialyte, and polylithionite. The optical constants for hyalotekite from Långban and Dara-i-Pioz are, respectively, α = 1.656, 1.646, β = 1.659–1.660, 1.649, γ = 1.670–1.671, 1.659 (all ± 0.002), 2Vγ (mcas) = 57.2–60.5 ± 0.5°, 57.0 ± 1.1°(λ = 589 nm). Cell parameters of the Dara-i-Pioz hyalotekite for a body-centred triclinic cell are: a = 11.284(2), b = 10.930(1), c = 10.272(8) Å, α = 90.35(2)°, β = 90.11(3)°, γ = 89.98(1)°. Electron and ion microprobe data show that Långban hyalotekite is heterogeneous even within a given sample; the most important substitutions are Pb = Ba, K and coupled B = Si and B = Be. Minor constituents include Mn in the Långban hyalotekite and Na in the Dara-i-Pioz hyalotekite, which also differs in its significantly higher Ba/Pb ratio. Conditions suggested for hyalotekite formation at Långban and Dara-i-Pioz are P ⩽ 4 kbar, T ⩾ 500°C, silica saturation, peralkalinity, and relatively high oxygen fugacities and low sulphur fugacities. These temperatures must have been sufficiently high to allow for miscibility of Pb with Ba (and K) despite the lone pair of electrons of Pb2+.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, G. and Charalampides, G. (1986) New lead isotope data from Langban mineralization, central Sweden. Geol. Form. Stockholm Forhand., 108, 243–50.CrossRefGoogle Scholar
Abs-Wurmbach, I., Peters, Tj., Langer, K. and Schreyer, W. (1983) Phase relations in the system Mn-Si-O: an experimental and petrological study. Neues Jahrb. Mineral. Abh., 146, 258–79.Google Scholar
Alfors, J. T. and Pabst, A. (1984) Titanian taramel-lites in western North America. Amer. Mineral., 69, 358–73.Google Scholar
Aminoff, G. (1918) Nagra iakttagelser angaende mineralens paragenes och succession vid Lang-banshyttan. Geol. Foren. Stockholm Forhand., 40, 535–46.CrossRefGoogle Scholar
Baker, J. H., HeUingwerf, R. H. and Oen, I. S. (1988) Structure, stratigraphy, and ore-forming processes in Bergslagen: implications for the development of the Svecofennian of the Baltic Shield. Geol. Mijnbouw, 67, 121–38.Google Scholar
Belakovskiy, D. I. (1991) Die seltenen Mineralien von Dara-i-Pioz im Hochgebirge Tadshikistans. Lapis, 16(12), 42-8.Google Scholar
Bence, A. E. and Albee, A. L. (1968): Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol., 76, 382–403.CrossRefGoogle Scholar
Björk, L. (1986) Beskrivning till Berggrundskartan Filipstad NV. Sveriges Geologiska Undersokning, Berggrundsgeologiska och Geofysiska Kartblad, Skala 1:50 000. Serie Af, No. 147.Google Scholar
Des Cloizeaux, A. (1878) Hyalotekite. Bull. Soc. Fr. Mineral. Crist., 1, 9.Google Scholar
Grew, E. S., Chernosky, J. V., Werding, G., Abraham, K., Marquez, N. and Hinthorne, J. R. (1990) Chemistry of kornerupine and associated minerals, a wet chemical, ion microprobe, and X-Ray study emphasizing Li, Be, B and F contents. J. Petrol, 31, 1025–70.CrossRefGoogle Scholar
Grew, E. S., Belakovskiy, D. I., Fleet, M. E., Yates, M. G., McGee, J. J. and Marquez, N. (1993) Reedmergnerite and associated minerals from peralkaline pegmatite, Dara-i-Pioz, southern Tien Shan, Tajikistan. Eur. J. Mineral., 5, 971–84.CrossRefGoogle Scholar
Hall, A. (1982) The Pendennis peralkaline minette. Mineral. Mag., 45, 257–66.CrossRefGoogle Scholar
Holdaway, M. J. (1971) Stability of andalusite and the aluminum silicate phase diagram. Amer. J. Set, 111, 97–131.Google Scholar
Kerrick, D. M. (1972) Experimental determination of muscovite + quartz stability with PHlo Aotai-Amer. J. Set, 272, 946-58.Google Scholar
Kimata, M. (1993) Crystal structure of KBSi3O8 isostructural with danburite. Mineral. Mag., 57, 157–64.CrossRefGoogle Scholar
Klein, C, Jr. (1966) Mineralogy and petrology of the metamorphosed Wabush Iron Formation. J. Petrol., 7, 246–305.CrossRefGoogle Scholar
Larsen, E. S. (1921) The microscopic determination of the nonopaque minerals. U.S. Geol. Surv. Bull., 679.Google Scholar
Larsen, E. S. and Berman, H. (1934) The microscopic determination of the nonopaque minerals. U.S. Geol. Surv. Bull., 848.Google Scholar
Lindström, G. (1887) Om hyalotekit fran Langban. Ofversigt af Kongliga Vetenskaps-Akademiens Forhandlingar, 9, 589–93.Google Scholar
Linthout, K. and Lustenhouwer, W. J. (1993) Ferrian high sanidine in a lamproite from Cancarix, Spain. Mineral. Mag., 57, 289–99.CrossRefGoogle Scholar
Magnusson, N. H. (1930) Langbans Malmtrakt Geologisk Beskrivning. Sveriges Geol. Unders., series C, no. 23, 111 p.Google Scholar
Magnusson, N. H. (1970) The origin of the iron ores in central Sweden and the history of their alterations. Sveriges Geol. Unders., series C, no. 643, 127 p.Google Scholar
Matsubara, S. (1980) The crystal structure of nagashimalite, Ba4(V3 + ,Ti)4(O,OH)2|Cl|-SigB2O27). Mineral. J., 10, 131–42.CrossRefGoogle Scholar
Mazzi, F. and Rossi, G. (1980) The crystal structure of taramellite. Amer. Mineral., 65, 123–8.Google Scholar
Moore, P. B. (1968) Substitutions of the type (Sbo.tFeo.t)-(Ti4+): The crystal structure of melanostibite. Amer. Mineral., 53, 1104—9.Google Scholar
Moore, P. B., Araki, T. and Ghose, S. (1982) Hyalotekite, a complex lead borosilicate: its crystal structure and the lone-pair effect of Pb(II). Amer. Mineral., 67, 1012–20.Google Scholar
Moore, P. B., Sen Gupta, P. K. and Le Page, Y. (1989) Magnetoplumbite, Pb-FefrOi.,: Refinement and lone-pair splitting. Amer. Mineral., 74, 1186–94.Google Scholar
Nordenskiöld, A. E. (1877) Nya mineralier fran Langban. Geol. For en. Stockholm Forhand., 3, 376–84.CrossRefGoogle Scholar
Petersen, O. V. and Johnsen, O. (1980) First occurrence of the rare mineral barylite in Green-land. Tschermaks Mineral. Petrog. Milteilungen, 27, 35–9.CrossRefGoogle Scholar
Rickard, D. (1988) Regional metamorphism in the Bergslagen Province, South Central Sweden. Geol. Mijnbouw, 67, 139–55.Google Scholar
Rouse, R. C, Dunn, P. J. and Peacor, D. R. (1984) Hedyphane from Franklin, New Jersey and Langban, Sweden: cation ordering in an arsenate apatite. Amer. Mineral., 69, 920–7.Google Scholar
Semenov, Ye. I., Dusmatov, V. D. and Samsonov, N. S. (1963) Yttrium-beryllium minerals of the datolite group. Kristallographiya, 8, 677-9 (English translation. Soviet Physics and Crystallography, 8, 539–41.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallog., A32, 751–67.CrossRefGoogle Scholar
Smith, J. V. and Brown, W. L. (1988) Feldspar Minerals, v. 1. Crystal structures, physical, chemical, and microtextural properties. 2nd ed., Springer, New York, 828 pp.Google Scholar
Thomson, J. A. and Guidotti, C. V. (1989) Carboniferous Barrovian metamorphism in southern Maine. Maine Geol. Surv., Studies in Maine Geology, 3, 35–51.Google Scholar
Van Derveer, D. G., Swihart, G. H., Sen Gupta, P. K. and Grew, E. S. (1993) Cation occupancies in serendibite: A crystal structure study. Amer. Mineral, 78, 195–203.Google Scholar
Williams, S. A. (1982) Luddenite, a new copper-lead silicate from Arizona. Mineral. Mag., 46, 363–4.CrossRefGoogle Scholar
Yakowitz, H., Myklebust, R. L. and Heinrich, K. F. J. (1973) Frame: An on-line correction procedure for quantitative electron probe microanalysis. NBS Technical Note 796.CrossRefGoogle Scholar