Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T12:42:22.525Z Has data issue: false hasContentIssue false

Hydrothermal subsilicic sodium gedrite from the Gåsborn area, West Bergslagen, central Sweden

Published online by Cambridge University Press:  05 July 2018

A. Damman*
Affiliation:
Institute of Earth Sciences, Free University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Abstract

Subsilicic sodium gedrite has been found in a hydrothermal vein together with sekaninaite (Fe-cordierite), andalusite, plagioclase, topaz, sillimanite, quartz, biotite, magnetite, ilmenite, hercynite, wolframite, pyrrhotite, chalcopyrite and pyrite. This vein is part of a hydrothermal vein system consisting predominantly of quartz-feldspar veins, some of which contain andatusite, sekaninaite, biotite, muscovite, fluorite and accessory oxides and sulphides, which was formed during the later stages of crystallization of a high-level anorogenic Svecofennian granite. Petrographic observations suggest the following crystallization sequence for the quartz-feldspar veins: plagioclase-quartz-andalusite-sekaninaite-microcline-biotite-albite-oxides and sulphides-muscovite-fluorite, and for the subsilicic sodium gedrite-bearing vein: andalusite-sekaninaite-subsilicic sodium gedrite-biotite-quartz-albite-sillimanite-topaz-oxides and sulphides. Electron microprobe analysis revealed that all subsilicic sodium gedrite is relatively homogeneous with only the following compositional variation: Na(A) 0.57–0.81, Aliv 2.31–2.57, XMg 0.15–0.21. The temperature (T) for the formation of the hydrothermal vein system is estimated at 550–600°C and the pressure (P) is estimated to be less than 3 kbar.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, G., Bollmark, B., Björk, L. and Wiktander, U. (1983a) Geol. F6r. Fdrh. 105, 78-81.Google Scholar
Åberg, G., Bollmark, B., Björk, L. and Wiktander, U. Levi, B. and Frederiksson, G. (1983b) Ibid. 105, 199-203.Google Scholar
Abraham, K. and Schreyer, W. (1973) Contrib. Mineral Petrol. 40, 275-92.CrossRefGoogle Scholar
Baker, J.H. (1985) Ph.D. thesis, GUA papers of geology. Series 1, No. 21,204 pp.Google Scholar
Baker, J.H. Hellingweff, R.H. and Hammergren, P. (1987) Geol. FOr. FOrh. (in press).Google Scholar
Beeson, R. (1978) Contrib. Mineral. Petrol. 66, 5-14.CrossRefGoogle Scholar
Berg, J.H. (1985) Am. Mineral. 70, 1205-10.Google Scholar
Cerný, P. and Povondra, P. (1967) Acta Univ. Carolinae- Geol. 203-21.Google Scholar
Damman, A. (1985) Unpubl. M.Sc. thesis, University of Amsterdam.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1963) Rock-forming minerals, Vol. 2, Chain Silicates. Longmans, Green and Co. Ltd., London.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. Hellingwerf, R.H. and Baker, J.H. (1985) Econ. Geol. 80, 479-87.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. Baker, J.H. and van Raaphorst, J.G. (1987) Geol. För. Förh. 109, 33-8.Google Scholar
Holdaway, M.J. (1971) Am. J. Sci. 271, 97-131.CrossRefGoogle Scholar
Holdaway, M.J. and Lee, S.M. (1977) Contrib. Mineral. Petrol. 63, 175-98.CrossRefGoogle Scholar
James, R.A., Grieve, R.A. F. and Paul, L. (1978) Am. J. Sci. 278, 41-63.CrossRefGoogle Scholar
Kamineni, D.C. (1975) Contrib. Mineral. Petrol. 53, 293-310.CrossRefGoogle Scholar
Kroonenberg, S.B. (1976) Ph.D. thesis, University of Amsterdam, 259 pp.Google Scholar
Krýza, R. (1977) Ann. Soc. Geol. Pologny. 47, 247-63.Google Scholar
Lal, K. and Moorehouse, W.W. (1969) Can. J. Earth Sci. 6, 145-65.CrossRefGoogle Scholar
Leake, B.E. (1978) Am. Mineral. 63, 1023-52.Google Scholar
Lonker, S.W. (1981) Am. J. Sci. 281, 1056-90.Google Scholar
Magnusson, N.H. (1930) Sver. Geol. Unders. Ser Ca, 23.Google Scholar
Murdoch, J. (1936) Am. Mineral 21, 68-69.Google Scholar
Oen, I.S. (1987) Prec. Res. (inpress).Google Scholar
Oen, I.S. and Verschure, R. (1982) Geol. Mijnbouw. 61, 301414.Google Scholar
Oen, I.S. and Verschure, R. and Wiklander, U. (1982) Ibid. 61, 309-12.Google Scholar
Oen, I.S. Helmers, H., Verschure, R.H. and Wiklander, U. (1982) Geol. Rundschau. 71, 182-94.CrossRefGoogle Scholar
Oen, I.S. Verschure, R. and Wiklander, U. (1984) Geol. Mijnbouw. 63, 55-88.Google Scholar
Otten, M.T. (1984) Am. Mineral. 69, 458-64.Google Scholar
Papike, J.J. and Ross, M. (1970) Ibid. 55, 1945-72.Google Scholar
Rabbitt, J.C. (1948) Ibid. 33,263-323.Google Scholar
Robinson, P. and Jaffe, H.W. (1971) Ibid. 56,1005-41.Google Scholar
Robinson, P. and Jaffe, H.W. Spear, F.S., Schumacher, J.C., Laird, J., Klein, C. Evans, E.W. and Doolan, B.L. (1982) Rev. Mineral 9b, t228.Google Scholar
Schumacher, J.C. (1980) Geol. Soc. Am., Abstracts with program. 12, 518.Google Scholar
Spear, F.S. (1980) Am. Mineral. 65, 1103-18.Google Scholar
Stout, J.H. (1972) J.Petrol. 13, 99-146.CrossRefGoogle Scholar
Welin, E., Gorbatschev, R. and Lundegfirdh, P.H. (1977) Geol. För. Förh. 99, 363457.Google Scholar
Zotov, I.A. and Siderenko, G.A. (1967) Dokl. Akad. nauk.SSSR. 180, 131-41.Google Scholar