Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:17:25.530Z Has data issue: false hasContentIssue false

The influence of crystallinity on the Mössbauer spectrum of lepidocrocite

Published online by Cambridge University Press:  05 July 2018

Enver Murad
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
Udo Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany

Abstract

Particle morphology can result in very pronounced effects of crystallinity on the Mössbauer spectra of lepidocrocite. Such effects can noticeably increase the quadrupole splitting of poorly crystallized paramagnetic lepidocrocites, making it necessary to fit two doublets of different quadrupole splittings to Mössbauer spectra of such samples, and may lower the onset of magnetic ordering from the bulk Néel temperature of 77 ±1 K to about 50 K.

At 4.2 K, distributions of magnetic hyperfine fields with a limiting upper field of 460 kOe are observed. The contributions of lower fields to such distributions increase with decreasing crystallinity, producing asymmetrically broadened resonant lines.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowen, L. H. (1979) Mossbauer Effect Ref. Data J.. 2, 7694.Google Scholar
Ewing, F. J. (1935) J. Chem. Phys. 3, 420–4.CrossRefGoogle Scholar
Johnson, C. E. (1969) J. Phys. C2, 19962002.Google Scholar
Kraan, A. M. van der (1973) Phys. stat. sol. al8, 215-26.CrossRefGoogle Scholar
Kündig, W., Bommel, H., Constabaris, G., and Lindquist, R. H. (1966) Phys. Rev. 142, 327–33.CrossRefGoogle Scholar
Kündig, W., Ando, K. J., Lindquist, R. H., and Constabaris, G. (1967) Czech. J. Phys. B17, 467–73.CrossRefGoogle Scholar
Morup, S., Madsen, M. B., Franck, J., Villadsen, J., and Koch, C. J. W. (1983) J. Magnetism Magnetic Mater. 40, 163–74.CrossRefGoogle Scholar
Murad, E. (1982a) Neues Jahrb. Mineral. Mh. 4556.Google Scholar
Murad, E. (1982b) Am. Mineral. 67, 1007–11.Google Scholar
Murad, E. and Schwertmann, U. (1980) Ibid. 65, 1044–9.Google Scholar
Schwertmann, U., and Taylor, R. M. (1972) Clays Clay Mineral. 20, 151–8.CrossRefGoogle Scholar
Schwertmann, U., Schulze, D. G., and Murad, E. (1982) Soil Sci. Soc. Am. J. 46, 869–75.CrossRefGoogle Scholar
Wivel, C., and Morup, S. (1981) J. Phys. E14, 605–10.Google Scholar
Yamamoto, N. (1968) Bull. Inst. Chem. Res. Kyoto Univ. 46, 275–82.Google Scholar