Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T11:55:11.592Z Has data issue: false hasContentIssue false

Influence of grinding on graphite crystallinity from experimental and natural data: implications for graphite thermometry and sample preparation

Published online by Cambridge University Press:  05 July 2018

E. Crespo
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
F. J. Luque*
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
J. F. Barrenechea
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
M. Rodas
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
*

Abstract

This paper examines the effects of shear stress on the structural parameters that define the ‘crystallinity’ of graphite. The results show that highly crystalline graphite samples ground for up to 120 min do not undergo detectable changes in the three-dimensional arrangement of carbon layers but crystallite sizes (Lc and La) decrease consistently with increasing grinding time. Grinding also involves particle-size diminution that results in lower temperatures for the beginning of combustion and exothermic maxima in the differential thermal analysis curves. These changes in the structural and thermal characteristics of graphite upon grinding must be taken into account when such data are used for geothermometric estimations.

Tectonic shear stress also induces reduction of the particle size and the Lc and La values of highly crystalline graphite. Thus, the temperature of formation of graphite according to structural as well as thermal data is underestimated by up to 100°C in samples that underwent the most intense shear stress. Therefore, application of graphite geothermometry to fluid-deposited veins where graphite is the only mineral found should take into consideration the effect of tectonic shearing, or the estimated temperatures must be considered as minimum temperatures of formation only.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, I., Gutiérrez-Alonso, G., Nieto, F., Gertner, I., Becker, A. and Cabero, A. (2003) The structure and the phyllosilicates (chemistry, crystallinity and texture) of Talas Ala-Tau (Tien Shan, Kyrgyz Republic); comparison with more recent subduction complexes. Tectonophysics, 365, 103127.CrossRefGoogle Scholar
Árkai, P., Ferreiro Maehlmann, R., Suchy, V., Balogh, K., Sykorova, I. and Frey, M. (2002) Possible effects of tectonic shear strain on phyllosilicates; a case study from the Kandersteg area, Helvetic domain, Central Alps, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 273290.Google Scholar
Barrenechea, J.F., Rodas, M. and Arche, A. (1992) Relation between graphitization of organic matter and clay mineralogy, Silurian black shales in Central Spain. Mineralogical Magazine, 56, 477485.CrossRefGoogle Scholar
Barzoi, S.C. and Guy, B. (2002) Role of metamorphic strain in the crystallinity of graphite: the example of the graphitic schists from the Lotru valley (Carpathians, Romania). Comptes Rendus Geoscience, 334, 8995.CrossRefGoogle Scholar
Beyssac, O., Goffé, B., Chopin, C. and Rouzaud, J.-N. (2002 a) Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20, 859871.CrossRefGoogle Scholar
Beyssac, O., Rouzaud, J.-N., Goffé, B., Brunet, F. and Chopin, C. (2002 b) Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. Contributions to Mineralogy and Petrology, 143, 1931.CrossRefGoogle Scholar
Beyssac, O., Brunet, F., Petitet, J.P., Goffé, B. and Rouzaud, J.-N. (2003 a) Experimental study of the microtextural and structural transformations of carbonaceous material under pressure and temperature. European Journal of Mineralogy, 15, 937951.CrossRefGoogle Scholar
Beyssac, O., Goffé, B., Petitet, J.P., Froigneux, E., Moreau, M. and Rouzaud, J.-N. (2003 b) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta, Part A, 59, 22672276.CrossRefGoogle ScholarPubMed
Beyssac, O., Bollinger, L., Avouac, J.P. and Goffé, B. (2004) Thermal metamorphism in the Lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth and Planetary Science Letters, 225, 233241.CrossRefGoogle Scholar
Buseck, P.R. and Bo-Jun, H. (1985) Conversion of carbonaceous material to graphite during metamorphism. Geochimimica et Cosmochimica Acta, 49, 20032016.CrossRefGoogle Scholar
Bustin, R.M., Ross, J.V. and Rouzaud, J.N. (1995 a) Mechanisms of graphite formation from kerogen: experimental evidence. International Journal of Coal Geology, 28, 136.CrossRefGoogle Scholar
Bustin, R.M., Rouzaud, J.-N. and Ross, J.V. (1995 b) Natural graphitization of anthracite: Experimental considerations. Carbon, 33, 679691.CrossRefGoogle Scholar
Cebulak, S., Gaweda, A. and Hanak, B. (1999 a) Dispersed organic matter as an indicator of the metamorphic processes – the example of graphites from western Tatra crystalline basament. Acta Montanistica Slovaca, 4, 197198.Google Scholar
Cebulak, S., Gawêda, A. and Langier-Kużniarowa, A. (1999 b) Oxyreactive thermal analysis of dispersed organic matter, kerogen and carbonization products. Journal of Thermal Analysis and Calorimetry, 56, 917924.CrossRefGoogle Scholar
Crespo, E., Luque, F.J., Barrenechea, J.F. and Rodas, M. (2005) Mechanical graphite transport in fault zones and the formation of graphite veins. Mineralogical Magazine, 69, 463470.CrossRefGoogle Scholar
Diessel, P.R., Brothers, R.N. and Black, P.M. (1978) Coalification and graphitization in high-pressure schists in New Caledonia. Contributions to Mineralogy and Petrology, 68, 6378.CrossRefGoogle Scholar
Dissanayake, C.B. (1994) Origin of vein graphite in high-grade metamorphic terrains. Mineralium Deposita, 29, 5767.CrossRefGoogle Scholar
Fernández-Caliani, J.C. and Galán, E. (1992) Influence of tectonic factors on illite crystallinity: a case study in the Iberian Pyrite Belt. Clay Minerals, 27, 385388.CrossRefGoogle Scholar
Grew, E.S. (1974) Carbonaceous material in some metamorphic rocks of New England and other areas. Journal of Geology, 82, 5073.CrossRefGoogle Scholar
Katz, M.B. (1987) Graphite deposits of Sri Lanka: a consequence of granulite facies metamorphism. Mineralium Deposita, 22, 1825.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edition. John Wiley, New York.Google Scholar
Kwiecinska, B. (1980) Mineralogy of natural graphites. Polska Akademii Nauk, Prace Mineralogiczne, 67, 579.Google Scholar
Landis, C.A. (1971) Graphitization of dispersed carbonaceous material in metamorphic rocks. Contributions to Mineralogy and Petrology, 30, 3445.CrossRefGoogle Scholar
Lespade, P., Al-Jishi, R. and Dresselhaus, M.S. (1982) Model for Raman scattering from incompletely graphitized carbons. Carbon, 20, 427431.CrossRefGoogle Scholar
Luque, F.J., Barrenechea, J.F. and Rodas, M. (1993) Graphite geothermometry in low and high temperature regimes: two case studies. Geological Magazine, 130, 501511.CrossRefGoogle Scholar
Luque, F.J., Pasteris, J.D., Wopenka, B., Rodas, M. and Barrenechea, J.F. (1998) Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation. American Journal of Science, 298, 471497.CrossRefGoogle Scholar
Malisa, E.P. (1998) Application of graphite as a geothermometer in hydrothermally altered metamorphic rocks of the Merelani-Lelatema area, Mozambique Belt, northeastern Tanzania. Journal of African Earth Sciences, 26, 313316.CrossRefGoogle Scholar
Nakamizo, M., Honda, H. and Inagaki, M. (1978) Raman spectra of ground natural graphite. Carbon, 16, 281283.CrossRefGoogle Scholar
Nishimura, Y., Coombs, D.S., Landis, C.A. and Itaya, T. (2000) Continuous metamorphic gradient documented by graphitization and K-Ar age, southeast Otago, New Zealand. American Mineralogist, 85, 16251636.CrossRefGoogle Scholar
Ong, T.S. and Yang, H. (2000) Effect of atmosphere on the mechanical milling of natural graphite. Carbon, 38, 20772085.CrossRefGoogle Scholar
Pasteris, J.D. (1989) In situ analysis in geological thin-sections by Laser Raman Microprobe Spectroscopy: a cautionary note. Applied Spectroscopy, 43, 567570.CrossRefGoogle Scholar
Pasteris, J.D. and Wopenka, B. (1991) Raman spectra of graphite as indicators of degree of metamorphism. The Canadian Mineralogist, 29, 19.Google Scholar
Pérez-Rodríguez, J.L., Sánchez del Villar, L. and Sánchez Soto, P.J. (1988) Effects of dry grinding on pyrophyllite. Clay Minerals, 23, 399410.CrossRefGoogle Scholar
Rahl, J.M., Anderson, K.M., Brandon, M.T. and Fassoulas, C. (2005) Raman spectroscopy carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece. Earth and Planetary Science Letters, 240, 339354.CrossRefGoogle Scholar
Rietmeijer, F.J.M. and Mackinnon, I.D.R. (1985) Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature, 315, 733736.CrossRefGoogle Scholar
Ross, J.V. and Bustin, R.M. (1990) The role of strain energy in creep graphitization of anthracite. Nature, 343, 5860.CrossRefGoogle Scholar
Salver-Disma, F., Du Pasquier, A., Tarascon, J.-M., Lassègues, J.-C. and Rouzaud, J.-N. (1999 a) Physical characterization of carbonaceous materials prepared by mechanical grinding. Journal of Power Sources, 81-82, 291295.CrossRefGoogle Scholar
Salver-Disma, F., Tarascon, J.-M., Clinard, C. and Rouzaud, J.-N. (1999 b) Transmission electron microscopy studies on carbon materials prepared by mechanical milling. Carbon, 37, 19411959.CrossRefGoogle Scholar
Sánchez-Soto, P.J., Jiménez de Haro, M.C., Pérez Maqueda, L.A., Varona, I. and Pérez-Rodriguez, J.L. (2000) Effects of grinding on the structural changes of kaolinite powders. Journal of the American Ceramic Society, 83, 16491657.CrossRefGoogle Scholar
Shengelia, D.M., Akhvlediani, R.A. and Ketskhoveli, D.N. (1979) The graphite geothermometer. Doklady Akademii Nauk SSSR, 235, 132134.Google Scholar
Stepkowska, E.T., Pérez-Rodríguez, J.L., Jiménez de Haro, M.C., Sánchez-Soto, P.J. and Maqueda, C. (2001) Effects of grinding and water vapour on the particle size of kaolinite and pyrophyllite. Clay Minerals, 36, 105114.CrossRefGoogle Scholar
Suchy, V., Frey, M. and Wolf, M. (1997) Vitrinite reflectance and shear-induced graphitization in orogenic belts: A case study from Kandersteg area, Helvetic Alps, Switzerland. International Journal of Coal Geology, 34, 120.CrossRefGoogle Scholar
Wada, H., Tomita, T., Matsuura, K., Iuchi, K., Ito, M. and Morikiyo, T. (1994) Graphitization of carbonaceous matter during metamorphism with References to carbonate and pelitic rocks of contact and regional metamorphisms, Japan. Contributions to Mineralogy and Petrology, 118, 217228.CrossRefGoogle Scholar
Wakayama, H., Mizuno, J., Fukushima, Y., Nagano, K., Fukunaga, T. and Mizutani, U. (1999) Structural defects in mechanically ground graphite. Carbon, 37, 947952.CrossRefGoogle Scholar
Wopenka, B. and Pasteris, J.D. (1993) Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist, 78, 533557.Google Scholar
Yui, T.F., Huang, E. and Xu, J. (1996) Raman spectrum of carbonaceous material: a possible metamorphic grade indicator for low-grade metamorphic rocks. Journal of Metamorphic Geology, 14, 115124.CrossRefGoogle Scholar