Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T15:06:16.396Z Has data issue: false hasContentIssue false

Iron-rich talc-opal-minnesotaite spherulites and crystallochemical relations of talc and minnesotaite

Published online by Cambridge University Press:  05 July 2018

P. C. A. Kager
Affiliation:
Geologisch Instituut, Universiteit van Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam, The Netherlands
I. S. Oen
Affiliation:
Geologisch Instituut, Universiteit van Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam, The Netherlands

Abstract

Zoned spherulites in greenalite-siderite-silica rocks of the Emilia-San Valentin lead-zinc deposit, Sierra de Cartagena, SE Spain, show a core of iron-rich talc, (Mgl.8Fel.2)Si4Ol0(OH)2, an intermediate zone of opal-chalcedony, and a rim of minnesotaite, (Fe2.7Mg0.3)Si4Ol0(OH)2. Crystalllization of the spherulites, presumably from undercooled silica sols carrying dissolved Mg and Fe, began with the non-equilibrium precipitation of metastable iron-rich talc; the residual fluids enveloping the growing spherulites became more iron-rich in composition until metastable equilibrium between iron-rich talc and iron-enriched residual liquid impeded the further growth of the iron-rich talc; the spherulites were then overgrown by colloidal silica flocculates and a rim of minnesotaite precipitated from the iron-enriched residual fluid. The proposed crystallization model implies that, if talc and minnesotaite represent an isomorphic series, under equilibrium conditions there is a broad immiscibility region in the series.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Floran, R.J. and Papike, J.J. (1975). Bull.Geol.Soc.Amer. 86, 1169–90.2.0.CO;2>CrossRef2.0.CO;2>Google Scholar
Floran, R.J. (1978), J. Petrol. 19, 215–88.CrossRefGoogle Scholar
Forbes, W.C. (1969). Amer. Mineral. 54, 1399–408.Google Scholar
Forbes, W.C. (1971), J. Geol. 54, 6374.CrossRefGoogle Scholar
Friedrich, G. (1964). Geol. Jahrb. Beiheft 79, 1108.Google Scholar
Guggenheim, S., Bailey, S.W., Eggleton, B.A., and Wilies, P. (1982). Canad. Mineral. 20, 1–18.Google Scholar
JCPDS (Joint Committee on Povder Diffraction Standards) (1980). Mineral Powder Diffraction File.Google Scholar
Kager, P.C.A. (1980). Thesis, University of Amsterdam. GUA-Papers of Geology (Amsterdam), Series 1–12, 1–203.Google Scholar
Klein, C. (1974). Canad. Mineral. \£, 12, 2598.Google Scholar
Miyano, T. (1978). Geoahem. J. 12, 201–11.CrossRefGoogle Scholar
Oen, I. S. , Fernández, J.C., and Manteca, J. I. (1975). Soon. Geol. 70, 1259–78.Google Scholar