Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T04:08:08.008Z Has data issue: false hasContentIssue false

Isocubanite, a New Definition of the Cubic Polymorph of Cubanite CuFe2S3

Published online by Cambridge University Press:  05 July 2018

Caye René
Affiliation:
Bureau de Recherches Géologiques et Minières, Département MGA, Boite Postale 6009, 45060 Orléans Cedex, France
Bernard Cervelle
Affiliation:
Laboratoire de Minéralogie-Cristallographie associé au CNRS, Université P. et M. Curie, Tour 16, 4 place Jussieu, 75252 Paris Cedex 05, France
Fabien Cesbron
Affiliation:
Laboratoire d'Etude des Matériaux Minéraux, U.F.R. Faculté des Sciences, Université d'Orléans, 45067 Orléans Cedex 2, France
Elisabeth Oudin
Affiliation:
Bureau de Recherches Géologiques et Minières, Département MGA, Boite Postale 6009, 45060 Orléans Cedex, France
Paul Picot
Affiliation:
Bureau de Recherches Géologiques et Minières, Département MGA, Boite Postale 6009, 45060 Orléans Cedex, France
François Pillard
Affiliation:
Bureau de Recherches Géologiques et Minières, Département MGA, Boite Postale 6009, 45060 Orléans Cedex, France

Abstract

Isocubanite is a cubic polymorph of cubanite CuFe2S3, discovered in the submarine sulphide deposits of the East Pacific Rise (EPR) and the Red Sea, in association with chalcopyrite, pyrrhotine, pyrite, sphaterite or wurtzite and anhydrite. It was previously obtained artificially and mentioned as iss, ‘intermediate solid solution of CuFe2S3 composition’. Crystals are cubic with a = 5.303(3) Å and strongest lines in the X-ray powder pattern are 3.059 (10) 111, 1.876 (7) 220, 1.602 (5) 311. Euhedral grains range from a few microns up to 400 µm, with a Vickers microhardness of 175(25) kg/mm2 for P = 100 g. Isocubanite is usually intimately intergrown with iron- and zinc-rich chalcopyrite and is opaque with a metallic lustre and a bronze colour. Pinkish brown and isotropic in polished sections; reflectance values (SiC standard) are: 420 nm 22.73%, 460 nm 26.87, 500 nm 31.34, 540 nm 34.79, 580 nm 37.35, 620 nm 39.11,660 nm 40.32, 700 nm 41.33, 740 nm 41.91, 780 nm 42.50. Electron microprobe analyses gave (wt. %): Fe 41.64–42.49, Cu 20.79–21.52, Zn 0.77–1.09, S 35.49–35.82, corresponding to the formula (Cu,Zn)Fe2S3.

Isocubanite is characteristic of high-temperature (> 200 °C) present-day submarine sulphide deposits where hot hydrothermal fluids are quenched by seawater as in EPR deposits or by cooler brines as in Atlantis II Deep, in the Red Sea; it is unstable and therefore unusual in fossil ores. This cubic phase was previously observed and described more or less accurately as cubic cubanite, cubanite II, chalcopyrrhotite and iss; the name isocubanite, proposed in order to clarify the nomenclature, and this new description, were approved by the IMA Commission on New Minerals and Mineral Names.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amcoff, O. (1981) Heating experiments of chalcopyrite pyrrhotite ores: studies on the stability of the intermediate solid solution. Neues Jahrb. Mineral., Mh. 55368.Google Scholar
Barton, P.B.J. (1973) Solid solutions in the system CuFe-S. Part I: the CuS and CuFeS joins. Econ. Geol. 68, 455-65.Google Scholar
Blomstrand, C.W. (1870) On some new Swedish minerals and the composition of pyrrhotite. Öfvers. K. Vetensk. Akad. Forh. Stockh. 27, 19-27.Google Scholar
Borchert, H. (1934) Ober Entmischungen im System Cu-Fe-S und ihre Bedeutung als geologische Thermometer. Chem. Erde, 9, 145-72.Google Scholar
Brett, R. (1964) Experimental data from the system CuFe-S and their bearing on exsolution textures in ores. Econ. Geol. 59, 124-169.Google Scholar
Cabri, L.J. (1973) New data on phase relations in the CuFe-S system. Ibid. 68, 443-54.Google Scholar
Hall, S.R., Szymanski, J.T., and Stewart, J.M. (1973) On the transformation of cubanite. Can. Mineral. 12, 338.Google Scholar
Fleet, M.E. (1970) Refinement of the crystal structure of cubanite and polymorphism of CuFe2S3. Z. Kristallogr. 132, 276-87.Google Scholar
Geijer, P. (1924) On cubanite and 'chalcopyrrhotite' from Kaveltorp. Geol. Fdren. Stoekh. Fdrh. 46, 35-45.Google Scholar
Genkin, A.D., Filimonova, A.A., Shadlun, T.N., Soboleva, S.V., and Troneva, N.V. (1965) On cubic cubanite and cubic chalcopyrite. Geochim. Internat. 2, 766-81.Google Scholar
Haymon, R. and Kastner, M. (1981) Hot spring deposits on the East Pacific Rise at 21 °N preliminary description of mineralogy and genesis. Earth Planet. Sci. Lett. 53, 363-81.Google Scholar
Hutchison, M.N. and Scott, S.D. (1981) Sphalerite geobarometry in the Cu-Fe-Zn-S system. Econ. Geol. 76, 143-53.Google Scholar
Ixer, R.A., Alabaster, I., and Pearce, J.A. (1984) Ore petrography and geochemistry of massive sulphide deposits within the semail ophiolite, Oman. Trans. Inst. Mining Metallurgy, 93, 114-24.Google Scholar
Kojima, S. and Sugaki, A. (1984) Phase relations in the central portions of the CuFeZn - S system between 800°C and 500°C Mineral. J. 12, 15-28.Google Scholar
Kojima, S. and Sugaki, A. (1985) Phase relations in the CuFeZnS system between 500°C and 300°C under hydrothermal conditions. Econ. Geol. 80, 158-71.Google Scholar
Koski, R.A., Claque, D.A., and Oudin, E. (1984) Mineralogy and chemistry of massive sulphide deposits from the Juan de Fuca Ridge. Geol. Soc. Am. Bull. 95, 930-45.Google Scholar
Lafitte, R. and Maury, R. (1983) The stoichiometry of sulfides and its evolution: a chemical study of pyrites, chalcopyrites and sphalerites from terrestrial and oceanic environments. Earth Planet. Sci. Lett. 64, 145-52.Google Scholar
Lafitte, R. and Maury, R. Maury, R., and Perseil, E.A. (1984) Analyse mineralogique de cheminées a sulfures de la Dorsale Est Pacifique (13° N.). Mineral. Deposita, 19, 274-82.Google Scholar
Lescuyer, J.L., Oudin, E. and Beurrier, M. (in press) Review of the different types of mineralization related to the Oman ophiolitic volcanism. Schweizerbach' Sche Verlagbuch Handlnng. IAGOD Symposium 1986, 3.Google Scholar
Maclean, W.H., Cabri, L.J., and Gill, J.E. (1972) Exsolution products in heated chalcopyrite. Can. J. Earth Sci. 9, 1305-17.CrossRefGoogle Scholar
Noltner, J. (1979) Erzmicroskopische Untersuchungen an Erzschaliimmen aus dem Atlantis II Tier, Roten Meer. Diplom. Arbeit, Universitäit Heidelberg.Google Scholar
Odman, O.H. (1933) Erz mikroskopische Untersuchung des Sulfiderze von Kaveltorp in Mittelsschweden. Geol. För. Förh. 55, H.4, no. 395.Google Scholar
Oudin, E. (1981) Etudes minéralogique et géochimique des dépôts sulfurés sous-marins actuels de la ride Est-Pacifique (21° N.). Document du BRGM, n° 25, 241.Google Scholar
Oudin, E. (1982) Mineralogical study of hydrothermal sulphides collected in the Galapagos Rift at 0° 45' N. A comparison with other rift sulphides. Internal Report, BRGM 82 SGN 841 MGA.Google Scholar
Oudin, E. (1983a) Hydrothermal sulphide deposits of the East Pacific Rise (21° N.). Part I: Descriptive Mineralogy. Marine Mining, 4, 39-77.Google Scholar
Oudin, E. (1983b) Min+ralogie de gisements et indices lids a des zones d'accretion ocdaniques actuelles (Ride Est Pacifique et Mer Rouge) el fossile (Chypre). Chron. Rech. Min. 470, 43-56.Google Scholar
Oudin, E. (1987) Trace element and precious metals concentrations in East Pacific Rise, Cyprus and Red Sea submarine sulphide deposits. In Marine minerals. Advances in Research and Resource Assessment. Nato ASI Series, (P. G. Teleki, M.R. Dobson, J.R. Moore and U. yon Stackelberg, eds.). D. Reidel Publisher, 349-62.Google Scholar
Oudin, E. and Constantinou, G. (1984) Black smoker chimney fragments in Cyprus sulphide deposits. Nature, 308, 349-53.CrossRefGoogle Scholar
Oudin, E. and Constantinou, G. Thisse, Y., and Ramboz, C. (1984) Fluid inclusion and mineralogical evidence for high-temperature saline hydrothermal circulation in the Red Sea metalliferous sediments: Preliminary results. Marine Mining, 5, 3-31.Google Scholar
Picot, P. et al. (1980) Etude mindralogique d'dchantillons du golfe de Californie, (Campagne CYAMEX). Document du BRGM20, 50.Google Scholar
Pottorf, R.J. and Barnes, H.L. (1983) Mineralogy, geochemistry and ore genesis of hydrothermal sediments from the Atlantis II Deep, Red Sea. Econ. Geol., Monograph 5, 198-223.Google Scholar
Ramdohr, P. (1928) Neue mikroskopische Beobachtungen am Cubanit (Chalmersit) und Lleberlegungen fiber seine lagerstättenkundliche Stellung. Z. prakt. Geol. 36, 169-78.Google Scholar
Ramdohr, P. (1960) Die Erzmineralien und ihre Verwachsungen. Akademie-Verlag, Berlin, 19-60.Google Scholar
Sawada, M., Ozima, M., and Fujiki, Y. (1962) Magnetic properties of cubanite (CuFeS). J. Geomag. Geoelect. 14, 107-12.CrossRefGoogle Scholar
Scott, S. (1983) Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineral. Mag. 47, 427-35.Google Scholar
Styrt, M.M., Brackmann, A.J., Holland, H.D., Clark, B.C., Pisutha-Arnaud, V., Eldridge, C.S., and Ottomoto, H. (1981) Mineralogy and isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East-Pacific Rise, 21° N. latitude. Earth Planet. Sci. Lett. 53, 382-90.Google Scholar
Sugaki, A., Shima, H., Kitakaze, A., and Harada, H. (1975) Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350°C and 300°C Econ. Geol. 70, 806-23.Google Scholar
Kitakaze, A.C.L., and Kojima, S. (1987) Bulk compositions of intimate intergrowths of chalcopyrite and sphalerite and their genetic implications. Mineral. Deposita, 22, 26-36.Google Scholar
Wiggins, L.B. and Craig, J.R. (1980) Reconnaissance of the CuFeZn-S system: sphalerite phase relation- ships. Econ. Geol. 75, 742-51.Google Scholar
Yund, R.A. and Kullerud, G. (1961) The system Cu-FeS. Carnegie Inst. Washington, Yearb. 60, 454-88.Google Scholar
Zierenberg, R.A., Shanks, W. C. III, Bischoff, J.L. (1984) Massive sulphide deposits at 21°C N, East Pacific Rise: chemical composition, stable isotopes, and phase equilibria. Geol. Soc. Am. Bull. 95, 92-29.Google Scholar