Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T00:33:24.605Z Has data issue: false hasContentIssue false

Kummerite, Mn2+Fe3+Al(PO4)2(OH)2·8H2O, a new laueite-group mineral from the Hagendorf Süd pegmatite, Bavaria, with ordering of Al and Fe3+

Published online by Cambridge University Press:  02 January 2018

I. E. Grey*
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
E. Keck
Affiliation:
Algunderweg 3, D-92694 Etzenricht, Germany
W. G. Mumme
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
A. Pring
Affiliation:
Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
C. M. Macrae
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
A. M. Glenn
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
C. J. Davidson
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
F. L. Shanks
Affiliation:
School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
S. J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
*

Abstract

Kummerite, ideally Mn2+Fe3+A1(PO4)2(OH)2.8H2O, is a new secondary phosphate mineral belonging to the laueite group, from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Kummerite occurs as sprays or rounded aggregates of very thin, typically deformed, amber yellow laths. Cleavage is good parallel to ﹛010﹜. The mineral is associated closely with green Zn- and Al-bearing beraunite needles. Other associated minerals are jahnsite-(CaMnMn) and Al-bearing frondelite. The calculated density of kummerite is 2.34 g cm 3. It is optically biaxial (-), α= 1.565(5), β = 1.600(5) and y = 1.630(5), with weak dispersion. Pleochroism is weak, with amber yellow tones. Electron microprobe analyses (average of 13 grains) with H2O and FeO/Fe2O3 calculated on structural grounds and normalized to 100%, gave Fe2O3 17.2, FeO 4.8, MnO 5.4, MgO 2.2, ZnO 0.5, Al2O3 9.8, P2O5 27.6, H2O 32.5, total 100 wt.%. The empirical formula, based on 3 metal apfu is (Mn2+0.37Mg0.27Zn0.03Fe2+0.33)Σ1.00(Fe3+1.06Al0. 94)Σ2.00PO4)1.91(OH)2.27(H2O)7.73. Kummerite is triclinic, P1̄, with the unit-cell parameters of a = 5.316(1) Å, b =10.620(3) Å , c = 7.118(1) Å, α = 107.33(3)°, β= 111.22(3)°, γ = 72.22(2)° and V= 348.4(2) Å3. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I) (hkl)] 9.885 (100) (010); 6.476 (20) (001); 4.942 (30) (020); 3.988 (9) (̄110); 3.116 (18) (1̄20); 2.873 (11) (1̄21). Kummerite is isostructural with laueite, but differs in having Al and Fe3+ ordered into alternate octahedral sites in the 7.1 Å trans-connected octahedral chains.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adiwidjaja, G., Friese, K., Klaska, K.-H. and Schlüter, J. (1999) The crystal structure of kastningite (Mn,Fe, Mg)(H2O)4[Al2(OH)2(H2O)2(PO4)2]-2H2O - a new hydroxyl aquated orthophosphate hydrate mineral. Zeitschriftfür Kristallographie, 214, 465468.Google Scholar
Baur, W.H. (1969) The crystal structure of paravauxite, FeAl2(PO4)2(OH2)6(H2O)2. Neues Jahrbuch für Mineralogie Monatshafte, 1969, 430433.Google Scholar
Birch, W.D., Grey, I.E., Mills, S.J., Pring, A. Wilson, N.C. and Keck, E. (2011) Nordgauite, MnAl2(PO4)2(F, OH)2-5.5H2O, a new mineral from the Hagendorf Süd pegmatite, Bavaria, Germany: description and crystal structure. Mineralogical Magazine, 75, 269—278.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica,B41, 244247.CrossRefGoogle Scholar
Cavellec, M., Riou, D. and Ferey, G. (1994) Oxyfluorinated microporous compounds. XI. Synthesis and crystal structure of ULM-10: The first bidimensional mixed-valence iron fluorophosphates with intercalated ethylenediamine. Journal of Solid State Chemistry, 112, 441447.CrossRefGoogle Scholar
Cooper, M. and Hawthorne, F.C. (1994) The crystal structure of curetonite, a complex heteropolyhedral sheet mineral. American Mineralogist, 79, 545—549.Google Scholar
Fanfani, I. andZanazzi, P.F. (1971) The crystal structure of butlerite. American Mineralogist, 56, 751757.Google Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Fleck, M., Kolitsch, U. and Hertweck, B. (2002) Natural and synthetic compounds with krohnkite-type chains: review and classification. Zeitschrift für Kristallographie, 217, 435443.Google Scholar
Frondel, C. (1958) Strunzite, a new mineral. Naturwissenschaften, 45, 37.CrossRefGoogle Scholar
Galliski, M.A. and Hawthorne, F.C. (2002) Refinement of the crystal structure of ushkovite from Nevados de Palermo, Republica Argentina. The Canadian Mineralogist, 40, 929937.CrossRefGoogle Scholar
Gatta, G.D., Vignola, P. and Meven, M. (2014) On the complex H-bonding network in paravauxite, Fe2+Al2(PO4)2(OH)2-8H2O: A single crystal neutron diffraction study. Mineralogical Magazine, 78, 841850.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G., Neville, S.M., Wilson, N.C. and Birch, W.D. (2010) Jahnsite-whiteite solid solutions and associated minerals in the phosphate pegmatite at Hagendorf-Süd, Bavaria, Germany. Mineralogical Magazine, 74, 969—978.CrossRefGoogle Scholar
Grey, I.E., MacRae, C.M., Keck, E. and Birch, W.D. (2012) Aluminium-bearing strunzite derived from jahnsite at the Hagendorf-Süd pegmatite, Germany. Mineralogical Magazine, 76, 11651174.CrossRefGoogle Scholar
Grey, I.E., Keck, E., Mumme, W.G., Macrae, C.M., Price, J.R., Glenn, A.M. and Davidson, C.J. (2015) Crystallographic ordering of aluminium in laueite at Hagendorf-Süd. Mineralogical Magazine, 79, 309319.CrossRefGoogle Scholar
Hawthorne, F.C. (1983) Graphical enumeration of polyhedral clusters. Acta Crystallographica,A39, 724736.CrossRefGoogle Scholar
Hawthorne, F.C. (1985) Towards a structural classification of minerals: The VIMIVT2Φn minerals. American Mineralogist, 70, 455473.Google Scholar
Hawthorne, F.C. (1988) Sigloite: The oxidation mechanism in [M2 +(PO4)2(OH)2(H2O)2]2∼ structures. Mineralogy and Petrology, 38, 201—211.CrossRefGoogle Scholar
Kampf, A.R., Hughes, J.M., Nash, B. and Marty, J. (2014) Kokinosite, Na2Ca2(V10O26)'24H2O, a new decava-nadate mineral species from the St. Jude mine, Colorado: crystal structure and descriptive mineralogy. The Canadian Mineralogist, 52, 1525.CrossRefGoogle Scholar
Krivovichev, S.V. (2004) Topological and geometrical isomerism in minerals and inorganic compounds with laueite-type heteropolyhedral sheets. Neues Jahrbuch für Mineralogie Monatshafte, 2004, 209220.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2000) LMGP-Program for the interpretation of X-ray experiments.INPG/Laboratoire des Matériaux et du Génie Physique. St Martin d'Heres, France.Google Scholar
Leavens, P.B. and Rheingold, A.L. (1988) Crystal structures of gordonite, MgAl2(PO4)2(OH)2(H2O)6(H2O)2, and its Mn analog. Neues Jahrbuch für Mineralogie Monatshafte, 1988, 265270.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O—H-0 hydrogen bond lengths in minerals. Pp. 103—115 in: Hydrogen Bond Researc.(P. Schuster and W. Mikenda, editors). Springer-Verlag, Wien.CrossRefGoogle Scholar
Locock, A.J. and Burns, P.C. (2003) The crystal structure of bergenite, a new geometrical isomer of the phosphuranylite group. The Canadian Mineralogist, 41,91101.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Meisser, N., Brugger, J., Krivovichev, S., Armbruster, T. and Favreau, G. (2012) Description and crystal structure of maghrebite, MgAl2(ASO4)2(OH)2-8H2O, from Aghbar, Anti-Atlas, Morocco: first arsenate in the laueite mineral group. European Journal of Mineralogy, 24, 717726.CrossRefGoogle Scholar
Mills, S.J. and Grey, I.E. (2015) Nomenclature for the laueite supergroup. Mineralogical Magazine, 79, 243246.CrossRefGoogle Scholar
Moore, P.B. (1965) The crystal structure of laueite, Mn2+Fe3 +2(OH)2(PO4)2(H2O)6 • 2H2O.American Mineralogist, 50, 18841892.Google Scholar
Moore, P.B. (1975) Laueite, pseudolaueite, stewartite and metavauxite: A study in combinatorial polymorphism. Neues Jahrbuch für Mineralogie Abhandlugen, 1975, 148159.Google Scholar
Moore, P.B. and Araki, T(1974) Stewartite, Mn2+Fe2 +(OH)2(H2O)6[PO4]3-2H2O: Its atomic arrangement. American Mineralogist, 59, 1272—1276.Google Scholar
Scholz, R., Chukanov, N.V., Menezes Filho, L.A.D., Attencio, D., Lagoeiro, L., Belotti, F.M., Chaves, M.L. S.C., Romano, A.W., Brandao, P.R., Belakovskiy, D.I. and Pekov, I. (2014) Césarferreiraite, Fe2+Fe3 + 2-(AsO4)2(OH)2-8H2O, from Eduardo mine, Conselheiro Pena, Minas Gerais, Brazil: Second arsenate in the laueite mineral group. American Mineralogist, 99, 607611.CrossRefGoogle Scholar
Segeler, C.G., Moore, P.B., Dyar, M.D., Leans, F. and Ferraiolo, J.A. (2012) Ferrolaueite, a new mineral from Monmouth County, New Jersey, USA. Australian Journal of Mineralogy, 16, 69—76.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica,A64, 112—122.Google Scholar
Sheldrick, G.M. (2015) SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallographica, A71,38.Google ScholarPubMed
Strunz, H. (1954) Laueit, MnFe2 n(PO4)2(OH)2-8H2O, ein neues Mineral. Naturwissenschaften, 41, 256.CrossRefGoogle Scholar
Wang, X., Liu, L., Cheng, H., Ross, K. and Jacobson, A.J. (2000) Synthesis and crystal structures of [H3N (CH2)2NH3]NbMOF(PO4)2(H2O)2, M = Fe, Co and [H3N(CH2)2NH3]Ti(Fe0.9Cr0.1)F1.3O0.7)(H0.3PO4)2(H2O)2. Journal of Materials Chemistry, 10, 12031208.CrossRefGoogle Scholar
Supplementary material: File

Grey et al. supplementary material

CIF

Download Grey et al. supplementary material(File)
File 187.8 KB