Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T17:04:57.373Z Has data issue: false hasContentIssue false

Leonite [K2Mg(SO4)2·4H2O], konyaite [Na2Mg(SO4)2·5H2O] and syngenite [K2Ca(SO4)2·H2O] fromTausoare Cave, Rodnei Mts, Romania

Published online by Cambridge University Press:  05 July 2018

B. P. Onac*
Affiliation:
Department of Mineralogy, ‘Babes-Bolyai’ University, Kogalniceanu 1, 3400 Cluj and Speleogical Institute ‘Emil Racovita’, Clinicilor 5, 3400 Cluj, Romania Speleogical Institute ‘Emil Racovita’, Clinicilor 5, 3400 Cluj, Romania
W. B. White
Affiliation:
Materials Research Laboratory and Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
I. Viehmann
Affiliation:
Speleogical Institute ‘Emil Racovita’, Clinicilor 5, 3400 Cluj, Romania

Abstract

Tausoare Cave is renowned in Romania for its gypsum and mirabilite speleothems. Of interest are the white crystalline speleothems formed on the floor of the ‘Sala de Mese’ (Dining Room) that were previously described as consisting of mirabilite. The samples we collected reveal crystals of two different habits. One shows the characteristic mirabilite fibrous crystals (cotton-like speleothem) while the other formed bladed and short prismatic crystals which comprise the delicate ‘cave flowers’. The mineral association was characterized by means of X-ray analysis, scanning electron microscopy and electron microprobe. Beside thenardite (dehydration product of mirabilite) we also identified three sulphate minerals: leonite [K2Mg(SO4)2·4H2O], syngenite [K2Ca(SO4)2·H2O] and konyaite [Na2Mg(SO4)2·5H2O]. Of these, leonite and konyaite have never been reported in a cave environment. This paper describes the mineralogy of this particular sulphate deposit and offers some viewpoints on the crystallogenesis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baciu, N. (1988) Granulometric and mineralogic studies of sediments from Izvorul Tausoarelor Cave (Rodnei Mts.). Pestera, 3, 111–24 (in Romanian).Google Scholar
Bleahu, M.D. (1972) Karst of Rumania. Pp. 341–53 in: Karst: Important Karst Regions of the Northern Hemisphere (Herek, M. and Stringfield, V.T., editors). Elsevier, Amsterdam.Google Scholar
Braitsch, O. (1971) Salt Deposits: their Origin and Composition. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Domsa, M. (1988) The genesis of mirabilite in Tausoare Cave Rodnei Mountains. Pestera, 2, 190204 (in Romanian).Google Scholar
Eugster, H.P. (1971) The beginning of experimental petrology. Science, 173, 481–9.CrossRefGoogle ScholarPubMed
Freman, J.P., Smith, G.L., Poulson, T.L., Watson, P.J. and White, W.B. (1973) Lee Cave, Mammoth Cave National Park, Kentucky. Bull. Natl. Speleol. Soc., 35, 109–25.Google Scholar
Goran, C. (1981) Romanian Cave Index. FRTA-CCSS and ISER, Bucharest.Google Scholar
Hardie, L.A. (1984) Evaporites: marine or non-marine? Amer. J. Sci., 284, 193240.CrossRefGoogle Scholar
Hill, C.A. and Forti, P. (1997) Cave Minerals of the World, 2nd edition. National Speleological Society, Huntsville, Alabama.Google Scholar
Keller, L.P., McCarthy, G.J. and Richardson, J.L. (1986) Laboratory modeling of Northern Great Plains salt efflorescence mineralogy. Soil Sci. Soc. Amer., 50, 1363–7.CrossRefGoogle Scholar
Kräutner, T. (1938) Das Kristalline Massiv von Rodna. Anuarul Inst. Geologic al Romaniei, 19, 162253.Google Scholar
Motiu, A., Viehmann, I. and Strusievici, R. (1977) Découverte de nouveaux minéraux dans la Grotte de Tausoare. Trav. Inst. Spéol. “Emil Racovitza”, 16, 211–6.Google Scholar
Onac, B.P. (1987) Aspects concerning the appearance and the origin of gypsum from Tausoare and Vintului caves. Bul. Speologic FRTA-CCSS, 11, 33–7.Google Scholar
Popa, C. (1988) The Cave Izvorul Tausoarelor. Pestera, 2, 6070 (in Romanian).Google Scholar
Silvestru, E. (1984) The relationship between tectonics and karstification in the cave from Izvorul Tausoarelor (Rodna Mountains). Theor. Appl. Karstol. 1, 3542.Google Scholar
Silvestru, E. (1990) On the genesis and evolution of mirabilite in the cave of Izvorul Tausoarelor (Romania). Trav. Inst. Spéol. “Emil Racovitza”, 29, 7983.Google Scholar
Silvestru, E. and Viehmann, I. (1982) Etude de microtectonique comparée dans le karst de monts de Rodna (Romania). Trav. Inst. Spéol. “Emil Racovitza”, 21, 63–7.Google Scholar
van Doesburg, J.D., Vergouwen, L. and van der Plas, L. (1982) Konyaite, Na2Mg(SO4)25H2O), a new mineral from Great Konya Basin, Turkey. Amer. Mineral., 67, 1035–8.Google Scholar
Viehmann, I. (1995) The Izvorul Tausoarelor Cave. Studii si Cercetari. Muzeul Bistrita-Nasaud, 1, 175–8 (in Romanian).Google Scholar
Viehmann, I. and Serban, M. (1962-1963) Preliminary note on the Izvorul Tausoareleor Cave (Rodnei Mountains). Lucr. Inst. de Spéol. “Emil Racovitza”, 1-2, 179207 (in Romanian).Google Scholar
Viehmann, I. and Serban, M. (1987) Eocene limestones' karst in the Rodna Mountains. Pp. 307–11 in: The Eocene from the Transylvanian Basin (Petrescu, I., editor). Cluj-Napoca.Google Scholar
Viehmann, I., Rusu, T. and Serban, M. (1964) Tausoare-Zalion karstic complex. Lucr. Inst. de Spéol. “Emil Racovitza”, 3, 2148 (in Romanian).Google Scholar
White, W.B. (1997) Thermodynamic equilibrium, kinetics, activation barriers and reaction mechanisms for chemical reactions in karst terrains. Environ. Geol., 30, 4658.CrossRefGoogle Scholar