Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T05:05:50.976Z Has data issue: false hasContentIssue false

Lukkulaisvaaraite, Pd14Ag2Te9, a new mineral from Lukkulaisvaara intrusion, northern Russian Karelia, Russia

Published online by Cambridge University Press:  05 July 2018

A. Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
T. L. Grokhovskaya
Affiliation:
Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry Russian Academy of Sciences, Staromonetnyi per. 35, Moscow 119017, Russia
F. Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
V. A. Rassulov
Affiliation:
N.M. Fedorovsky All-Russian Scientific Research Institute of Mineral Resources, Staromonetnyi per. 31, Moscow 119017, Russia

Abstract

Lukkulaisvaaraite, Pd14Ag2Te9, is a new platinum-group mineral discovered in the Lukkulaisvaara intrusion, northern Russian Karelia, Russia. In polished section crystals are ~40 mm across, rimmed by tulameenite and accompanied to varying degrees by telargpalite and Bi-rich kotulskite. Lukkulaisvaaraite is brittle, has a metallic lustre and a grey streak. Values of VHN20 fall between 339 and 371 kg mm–2, with a mean value of 355 kg mm–2, corresponding to a Mohs hardness of ~4. In plane-polarized light, lukkulaisvaaraite is light grey with a brownish tinge, has strong bireflectance, light brownish-grey to greyish-brown pleochroism and distinct to strong anisotropy; it exhibits no internal reflections. Reflectance values of lukkulaisvaaraite in air (R1, R2, in %) are: 40.9, 48.3 at 470 nm, 47.6, 56.4 at 546 nm, 52.1, 61.0 at 589 nm and 57.5, 65.2 at 650 nm. Five electron microprobe analyses of natural lukkulaisvaaraite gave the average composition Pd 52.17, Ag 7.03 and Te 40.36, total 99.61 wt.%, corresponding to the empirical formula Pd14.05Ag1.88Te9.06 based on 25 atoms; the average of nine analyses on synthetic lukkulaisvaaraite is Pd 52.13, Ag 7.31 and Te 40.58, total 100.02 wt.%, corresponding to Pd13.99Ag1.93Te9.08. The mineral is tetragonal, space group I4/m, with a = 8.9599(6), c = 11.822(1) Å , V = 949.1(1) Å3 and Z = 2. The crystal structure was solved and refined from the powder X-ray diffraction (XRD) data of synthetic Pd14Ag2Te9. Lukkulaisvaaraite has a unique structure type and shows similarities to that of sopcheite (Ag4Pd3Te4) and palladseite (Pd17Se15). The strongest lines in the powder XRD pattern of synthetic lukkulaisvaaraite [d(Å),I,hkl] are: 2.8323(58)(130,310), 2.8088(92),(213), 2.5542(66)(312), 2.4312(41)(321,231), 2.1367(57)(411,141), 2.1015(52)(233,323), 2.0449(100)(314), 2.0031(63)(420,240), 1.9700(30)(006), 1.4049(30)(246,426), 1.3187(36)(543,453). The mineral is named for the type locality, the Lukkulaisvaara intrusion in Russian Karelia.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelin, Y.V., Heaman, L.M. and Semenov, V.S. (1995) U–Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Research, 75, 3146.CrossRefGoogle Scholar
Baker, C.L., Lincoln, F.J and Johnson, A.W.S. (1991) A low-temperature structural phase transformation in CuAgS. Acta Crystallographica, 47, 891899.CrossRefGoogle Scholar
Barkov, A.Y., Martin, R.F., Tarkian, M., Poirier, G. and Thibault, Y. (2001) Pd-Ag tellurides from a Cl-rich environment in the Lukkulaisvaara layered intrusion, northern Russian Karelia. The Canadian Mineralogist, 39, 639653.CrossRefGoogle Scholar
Barkov, A.Y., Savchenko, Y.E. and Zhangurov, A.A. (1995) Fluid migration and its role in the formation of platinum-group minerals: evidence from the Imandrovsky and Lukkulaisvaara layered intrusion, Russia. Mineralogy and Petrology, 54, 249260.CrossRefGoogle Scholar
Begizov, V.D. and Batashov, Y.V. (1978) Platinum group minerals of the Lukkulaisvaara pluton, Doklady Akademii Nauk SSSR, 243, 12651268.Google Scholar
Bindi, L. and Cipriani, C. (2004) Ordered distribution of Au and Ag in the crystal structure of muthmannite, AuAgTe2, a rare telluride from Sacarimb, western Romania. American Mineralogist, 89, 15051509.CrossRefGoogle Scholar
Bindi, L., Spry, P.G. and Cipriani, C. (2004) Empressite A.T. from the Empress-Josephine mine, Colorado USA composition, physical properties and determination of the crystal structure. American Mineralogist, 89, 10431047.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004) Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37, 724731.CrossRefGoogle Scholar
de Wolff, P.M. (1968) A simplified criterion for reliability of a powder pattern indexing. Journal of Applied Crystallography, 1, 108113.CrossRefGoogle Scholar
Dubost, V., Balić-Žunić, T. and Makovicky, E. (2007) The crystal structure of Ni9.54Pd7.46S15. The Canadian Mineralogist, 45, 547855.CrossRefGoogle Scholar
Frueh, A.J. (1958) The crystallography of silver sulfide Ag2S. Zeitschrift für Kristallographie, 110, 136144.CrossRefGoogle Scholar
Geller, S. (1962) The crystal structure of Pd17Se15. Acta Crystallographica, 15, 713721.CrossRefGoogle Scholar
Grokhovskaya, T.L., Bakaev, G.F., Sholokhnev, V.V., Lapin, M.I., Muravitskaya, G.N. and Voitekhovich, V.S. (2003) The PGE ore mineralization in the Monchegorsk igneous layered complex (Kola Peninsula , Russia). Geologiya Rudnykh Mestorozhdenii, 45, 329352.Google Scholar
Grokhovskaya, T.L., Distler, V.V., Klyunin, S.F., Zakharov, A.A. and Laputina, I.P. (1992) Lowsulfide platinum group mineralization of the Lukkulaisvaara pluton, northern Karelia. International Geology Review, 34, 503520.CrossRefGoogle Scholar
Grokhovskaya, T.L., Lapina, M.I. and Mokhov, A.V (2009) Assemblages and genesis of platinum-group minerals in low-sulfide ores of the Monchetundra deposit, Kola peninsula, Russia. Geology of Ore Deposits, 51, 467485.CrossRefGoogle Scholar
HKL Technology (2004) CHANNEL 5, HKL. Technology A/S, Hobro, Denmark.Google Scholar
Laufek, F., Vymazalová, A., Drábek, M., Drahokoupil, J. and Dušek, M. (2013) Crystallographic study of the ternary system Pd-Ag-Te. Materials Structure, 20, 8889.Google Scholar
McCusker, L.B., von Dreele, R.B., Cox, D.E., Louër, D. and Scardi, P. (1999) Rietveld refinement guidelines. Journal of Applied Crystallography, 32, 3650.CrossRefGoogle Scholar
Ozslanyi, G. and Suto, A. (2004) Ab initio structure solution by charge flipping. Acta Crystallographica, A60, 134141.CrossRefGoogle Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP - a computer program for the solution of the crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2011) JANA2006: The Crystallographic Computing System. Institute of Physics, Praha, Czech Republic.Google Scholar
Rodríguez-Carvajal, J. (2006) FullProf.2k Rietveld Profile Matching and Integrated Intensities Refinement of X-ray and/or Neutron Data (Powder and/or Single-Crystal). Laboratoire Léon Brillouin, Centre d’Etudes de Saclay, Gif-sur-Yvette Cedex, France.Google Scholar
Schmidt, N.H., Bildesorensen, J.B. and Jensen, D.J. (1991) Band positions used for online crystallographic orientation determination from electron back scattering patterns. Scanning Microscopy, 5, 637643.Google Scholar
Semenov, S.V., Glebovitsky, V.A., Kol‘tsov, A.B., Semenov, V.S., Korneev, S.I. and Savatenkov, V.M. (2008) Metasomatic processes in the Lukkulaisvaara layered intrusion, Russia, and formation of low-sulfide PGE mineralization. Geology of Ore Deposits, 50, 249274.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Smith, G.S. and Snyder, R.L. (1976) FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. Journal of Applied Crystallography, 12, 6065.CrossRefGoogle Scholar
Topa, D., Makovicky, E. and Balić-Žunić, T. (2006) The crystal structures of jaguéite, Cu2Pd3Se4, and chrisstanleyite, Ag2Pd3Se4. The Canadian Mineralogist, 44, 497505.CrossRefGoogle Scholar
Vymazalová, A., Chareev, D.A., Kristavchuk, A.V., Laufek, F. and Drábek, M. (2014a) The system Ag- Pd-Se: phase relations involving minerals and potential new miner a l s. The Canadian Mineralogist, 52, 7789.CrossRefGoogle Scholar
Vymazalová, A., Grokhovskaya, T.L., Laufek, F. and Rassulov, V. (2014b) Lukkulaisvaaraite, IMA 2013- 115. CNMNC Newsletter No. 19, February 2014, page 169; Mineralogical Magazine, 78, 165170.Google Scholar
Yakovlev, Y.N., Distler, V.V., Mitrofanov, F.P., Razhev, S.A., Grokhovskaya, T.L. and Veselovsky, N.N. (1991) Mineralogy of PGE in the maficultramafic massifs of the Kola region. Mineralogy and Petrology, 43, 181192.CrossRefGoogle Scholar