Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:49:37.203Z Has data issue: false hasContentIssue false

Manganoblödite, Na2Mn(SO4)2·4H2O, and cobaltoblödite, Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  05 July 2018

A. V. Kasatkin*
Affiliation:
V/O "Almazjuvelirexport", Ostozhenka str., 22, block 1, 119034 Moscow, Russia
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131 Padova, Italy
J. Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, 18221 Prague, Czech Republic
J. Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
D. I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
A. A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
S. J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
D. Pedron
Affiliation:
Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, I-35131 Padova, Italy
A. Lanza
Affiliation:
Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, I-35131 Padova, Italy
M. Favaro
Affiliation:
CNR-ICIS-Padova, Corso Stati Uniti 4, I-35127 Padova, Italy
S. Bianchin
Affiliation:
CNR-ICIS-Padova, Corso Stati Uniti 4, I-35127 Padova, Italy
I. S. Lykova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
V. Goliáš
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague, Czech Republic
W. D. Birch
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia

Abstract

Two new minerals – manganoblödite (IMA2012–029), ideally Na2Mn(SO4)2·4H2O, and cobaltoblödite (IMA2012–059), ideally Na2Co(SO4)2·4H2O, the Mn-dominant and Co-dominant analogues of blödite, respectively, were found at the Blue Lizard mine, San Juan County, Utah, USA. They are closely associated with blödite (Mn-Co-Ni-bearing), chalcanthite, gypsum, sideronatrite, johannite, quartz and feldspar. Both new minerals occur as aggregates of anhedral grains up to 60 μm (manganoblödite) and 200 μm (cobaltoblödite) forming thin crusts covering areas up to 2 × 2 cm on the surface of other sulfates. Both new species often occur as intimate intergrowths with each other and also with Mn-Co-Ni-bearing blödite. Manganoblödite and cobaltoblödite are transparent, colourless in single grains and reddish-pink in aggregates and crusts, with a white streak and vitreous lustre. Their Mohs' hardness is ∼2½. They are brittle, have uneven fracture and no obvious parting or cleavage. The measured and calculated densities are Dmeas = 2.25(2) g cm−3 and Dcalc = 2.338 g cm−3 for manganoblödite and Dmeas = 2.29(2) g cm−3 and Dcalc = 2.347 g cm−3 for cobaltoblödite. Optically both species are biaxial negative. The mean refractive indices are α = 1.493(2), β = 1.498(2) and γ = 1.501(2) for manganoblödite and α = 1.498(2), β = 1.503(2) and γ = 1.505(2) for cobaltoblödite. The chemical composition of manganoblödite (wt.%, electron-microprobe data) is: Na2O 16.94, MgO 3.29, MnO 8.80, CoO 2.96, NiO 1.34, SO3 45.39, H2O (calc.) 20.14, total 98.86. The empirical formula, calculated on the basis of 12 O a.p.f.u., is: Na1.96(Mn0.44Mg0.29Co0.14Ni0.06)Σ0.93S2.03O8·4H2O. The chemical composition of cobaltoblödite (wt.%, electron-microprobe data) is: Na2O 17.00, MgO 3.42, MnO 3.38, CoO 7.52, NiO 2.53, SO3 45.41, H2O (calc.) 20.20, total 99.46. The empirical formula, calculated on the basis of 12 O a.p.f.u., is: Na1.96(Co0.36Mg0.30Mn0.17Ni0.12)Σ 0.95S2.02O8·4H2O. Both minerals are monoclinic, space group P21/a, with a = 11.137(2), b = 8.279(1), c = 5.5381(9) Å, β = 100.42(1)°, V = 502.20(14) Å3 and Z = 2 (manganoblödite); and a = 11.147(1), b = 8.268(1), C = 5.5396(7) Å, β = 100.517(11)°, V = 501.97(10) Å3 and Z = 2 (cobaltoblödite). The strongest diffractions from X-ray powder pattern [listed as (d(I)(hkl)] are for manganoblödite: 4.556(70)(210, 011); 4.266(45)(01); 3.791(26)(11); 3.338(21)(310); 3.291(100)(220, 021), 3.256(67)(211, 21), 2.968(22)(21), 2.647(24)(01); for cobaltoblödite: 4.551(80)(210, 011); 4.269(50)(01); 3.795(18)(11); 3.339(43)(310); 3.29(100)(220, 021), 3.258(58)(11, 21), 2.644(21)(01), 2.296(22)(122). The crystal structures of both minerals were refined by single-crystal X-ray diffraction to R1 = 0.0459 (manganoblödite) and R1 = 0.0339 (cobaltoblödite).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2003) Handbook of Mineralogy. Vol. V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, Arizona, USA.Google Scholar
Blakey, R.C. and Gubitosa, R. (1984) Controls of sandstone body geometry and architecture in the Chinle Formation (Upper Triassic), Colorado Plateau. Sedimentary Geology, 38, 14. 51–86.CrossRefGoogle Scholar
Coelho, A.A. and Cheary, R.W. (1997) X-ray Line Profile Fitting Program, XFIT. School of Physical Sciences, University of Technology, Sydney, New South Wales, Australia. ftp://ftp.minerals.csiro.au/ pub/xtallography/koalariet (program).Google Scholar
Hass, M. and Sutherland, G.B.B.M. (1956) The Infra-Red Spectrum and Crystal Structure of Gypsum. Proceedings of Royal Society of London A, 236, 427445.Google Scholar
Hawthorne, F.C. (1985) Refinement of the crystal structure of blödite: structural similarities in the [VIM(IVTF4)2Fn] finite-cluster minerals. The Canadian Mineralogist, 23, 669674.Google Scholar
Holland, T.J.B and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Hudak, M., Diaz, J.G. and Kozisek J. (2008) Disodium tetraaquabis (sulfato) iron(II). Acta Crystallographica, E64, i10.Google Scholar
Jensen, M.L. (1958) Sulfur isotopes and the origin of sandstone-type uranium deposits. Economic Geology, 53, 598616.CrossRefGoogle Scholar
John, J.F. (1821) Chemische Zerlegung eines neuen fossilen Salzes, des Blödits, in Chemische Untersuchungen mineralischer, vegetabilischer und animalischer Substanzen, Maurers chen Buchhandlung, Berlin, 240247.Google Scholar
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulphate and sulphate-bearing minerals. American Mineralogist, 92, 118.CrossRefGoogle Scholar
Lauro, C. (1940) Ricerche roentgenografiche sulla bloedite. Periodico di Mineralogia – Roma, 11, 8994.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Nickel, E.H. and Bridge P.J. (1977) Nickelblödite, Na2Ni(SO4)2·4H2O, a new mineral from Western Australia. Mineralogical Magazine, 41, 3741.CrossRefGoogle Scholar
Rumanova, I.M. (1958) Crystal structure of blödite. Doklady Akademii Nauk SSSR, 118, 8487. (in Russian).Google Scholar
Schaller, W.T. (1932) The refractive indices of blödite. American Mineralogist, 17, 530533.Google Scholar
Schlüter, J., Klaska, K.H. and Gebhard, G. (1999) Changoite, Na2Zn(SO4)2·4H2O, the Zn analogue of blödite, a new mineral from Sierra Gorda, Antofagasta, Chile. Neues Jahrbuech für Mineralogie, Monatshefte, 3, 97103.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Stewart, J.H., Poole, F.G., and Wilson, R.F. (1972) Stratigraphy and origin of the Chinle Formation and related Upper Triassic strata in the Colorado Plateau region: U.S. Geological Survey Professional Paper, 690, 336 p.Google Scholar
Stoilova, D. and Wildner, M. (2004) Blödite-type compounds Na2Me(SO4)2·4H2O (Me = Mg, Co, Ni, Zn): crystal structures and hydrogen bonding systems. Journal of Molecular Structure, 706, 5763.CrossRefGoogle Scholar
Thaden, R.E., Trites, A.F. Jr. and Finnell, T.L. (1964) Geology and Ore deposits of the White Canyon Area San Juan and Garfield Counties, Utah. Geological Survey Bulletin, 1125.Google Scholar
Supplementary material: File

Kasatkin et al. supplementary material

Structure factors

Download Kasatkin et al. supplementary material(File)
File 136.1 KB
Supplementary material: File

Kasatkin et al. supplementary material

CIF

Download Kasatkin et al. supplementary material(File)
File 13.4 KB