Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:29:36.977Z Has data issue: false hasContentIssue false

Mapping REE distribution in scheelite using luminescence

Published online by Cambridge University Press:  05 July 2018

J. Brugger*
Affiliation:
VIEPS, Department of Earth Sciences, P.O. Box 28E Monash University, Vic. 3800, Australia
A. A. Bettiol
Affiliation:
School of Physics, MARC, The University of Melbourne, Parkville, Vic. 3052, Australia
S. Costa
Affiliation:
VIEPS, Department of Earth Sciences, P.O. Box 28E Monash University, Vic. 3800, Australia
Y. Lahaye
Affiliation:
VIEPS, Department of Earth Sciences, P.O. Box 28E Monash University, Vic. 3800, Australia
R. Bateman
Affiliation:
Kalgoorlie Consolidated Gold Mines, PMB 27 Kalgoorlie, 6430 Western Australia
D. D. Lambert
Affiliation:
VIEPS, Department of Earth Sciences, P.O. Box 28E Monash University, Vic. 3800, Australia
D. N. Jamieson
Affiliation:
School of Physics, MARC, The University of Melbourne, Parkville, Vic. 3052, Australia

Abstract

In situ laser ablation high resolution ICP-MS analyses of scheelite from hydrothermal veins at the Archaean Mt. Charlotte gold deposit (Western Australia) show inhomogeneous REE distribution at small scale (<100 μm). In a limited number of samples, variations of the cathodoluminescence (CL) colours from blue to yellow are linked to the REE content of scheelite, and reveal oscillatory zoning of the REE with zone widths between 1 μm and 100 μm. However, CL failed to reveal the zoning in most inhomogeneous scheelite samples. A nuclear microprobe has been used to characterize the distribution of REE in these samples. No reasonable map for the distribution of REE could be obtained by particle induced X-ray emission, because of interferences with W-L lines. However, monochromatic ionoluminescence (IL) maps collected at the wavelength of the main REE3+ luminescence peaks revealed oscillatory zoning. Therefore, IL is a powerful tool for mapping the distribution of REE in natural scheelite. Monochromatic IL maps allow us to determine the nature of the inhomogeneous distribution of REE in scheelite, fundamental information for using the REE in this mineral as a marker for the chemistry of ore-forming fluids, and for interpreting Sm-Nd isotopic data.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anglin, C.D., Jonasson, I.R. and Franklin, J.M. (1996) Sm-Nd dating of scheelite and tourmaline – implications for the genesis of Archean gold deposits, Val d'Or, Canada. Econ. Geol., 91, 1372–82.CrossRefGoogle Scholar
Bettiol, A.A., Nugent, K.W. and Jamieson, D.N. (1997) The characterisation of high-grade synthetic quartz, corundum and spinel using ionoluminescence (IL). Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, 130, 734–9.CrossRefGoogle Scholar
Birks, J.B. and Black, F.A. (1951) Deterioration of anthracene under alpha-particle irradiation. Proc. Phys. Soc. Lond., A64, 511.CrossRefGoogle Scholar
Brugger, J., Gieré, R, Grobety, B. and Uspensky, E. (1998 a) Scheelite-powellite and paraniite-(Y) from Fianel, Val Ferrera, GR (Swiss Alps). Amer. Mineral., 83, 1100–10.CrossRefGoogle Scholar
Brugger, J., Lahaye, Y., Lambert, D.D., Bateman, R. and Costa, S. (1998 b) Inhomogeneous distribution of REE and initial Nd isotopic compositions in scheelite crystals from an Archaean gold deposit (Mt Charlotte, Western Australia). Goldschmidt Conference Abstracts, Mineral. Mag., 62A, 244–5.CrossRefGoogle Scholar
Brugger, J., Lahaye, Y., Costa, S., Lambert, D.D. and Bateman, R. (2000) Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt Charlotte and Drysdale gold deposits, Western Australia). Contrib. Mineral. Petrol., 139, 251–64.CrossRefGoogle Scholar
Caruba, R. Iacconi, P., Cottrant, J.F. and Calas, G. (1983) Thermoluminescence, fluorescence and electron paramagnetic resonance properties of synthetic hydrothermal scheelites. Phys. Chem. Min., 9, 223–8.CrossRefGoogle Scholar
Clout, J.M.F., Cleghorn, J.H. and Eaton, P.C. (1990) Geology of the Kalgoorlie gold field. Pp. 411–31 in: Geology of the Mineral Deposits of Australia and Papua New Guinea (Hughes, F.E., editor). The Australian Institute of Mining and Metallurgy, Melbourne.Google Scholar
Compston, W. and Pidgeon, R.T. (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature, 321, 766–9.CrossRefGoogle Scholar
Cottrant, J.F. (1981) Cristallochimie et géochimie des terres rares dans la scheelite: Application à quelques gisements français. PhD thesis, Univ. Paris-VI, France.Google Scholar
Darbyshire, D.P.F., Pitfield, P.E.J. and Campbell, S.D.G. (1996) Late Archean and Early Proterozoic gold-tungsten mineralization in the Zimbabwe Archean craton: Rb-Sr and Sm-Nd isotope constraints. Geology, 24, 1922.2.3.CO;2>CrossRefGoogle Scholar
Eichhorn, R, Höll, R., Jagoutz, E. and Schaerer, U. (1997) Dating scheelite stages: A strontium, neodymium, and lead approach from the Felbertal tungsten deposit, Central Alps, Austria. Geochim. Cosmochim. Acta, 61, 5005–22.CrossRefGoogle Scholar
Evensen, N.M., Hamilton, P.J. and O’Nions, R.K. (1978) Rare earth elements abundances in chondritic meteorites. Geochim. Cosmochim. Acta, 42, 1199–212.CrossRefGoogle Scholar
Frei, R, Nägler, T.F., Schönberg, R. and Kramers, J. D. (1998) Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization – genetic tracing and age constraints of crustal hydrothermal activity. Geochim. Cosmochim. Acta, 62, 1925–36.CrossRefGoogle Scholar
Gaft, M., Panczer, G., Uspensky, E. and Reisfeld, R. (1999) Laser-induced time-resolved luminescence of rare-earth elements in scheelite. Mineral. Mag., 63, 199210.CrossRefGoogle Scholar
Ghaderi, M. (1998) Sources of Archaean gold mineralization in the Kalgoorlie-Norseman region of Western Australia, determined from strontiumneodymium isotopes and trace elements in scheelite and host rocks. PhD Thesis, The Australian National University.Google Scholar
Ghaderi, M., Palin, M.J., Sylvester, P.J. and Campbell, I.H. (1999) Rare earth element systematics in scheelites from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Western Australia. Econ. Geol., 94, 423–38.CrossRefGoogle Scholar
Grasser, R. and Scharmann, A. (1976) Luminescent sites in CaWO4 and CaWO4:Pb crystals. J. Luminescence, 12-13, 473–8.CrossRefGoogle Scholar
Gribkovskii, V.P. (1998) Theory of luminescence. Pp. 144 in: Luminescence of Solids (Vij, D.R., editor). Plenum Press, New York.Google Scholar
Groves, D.I. (1993) The crustal continuum model for Late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineral. Deposita, 28, 366–74.CrossRefGoogle Scholar
Homman, N.P.O., Yang, C. and Malmqvist, K.G. (1994) A highly sensitive method for rare-earth element analysis using ionoluminescence combined with PIXE. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detector & Associated Equipment, 353, 610–4.CrossRefGoogle Scholar
Kempe, U., Trinkler, M. and Wolf, D. (1991) Yttrium und die Seltenerdfotolumineszenz natürlicher Scheelite. Chem. Erde, 51, 275–89.Google Scholar
Kent, A.J.R. and McDougall, I. (1995) 40Ar-39Ar and U-Pb age constraints on the timing of gold mineralization in the Kalgoorlie gold field, Western Australia. Econ. Geol., 90, 845–59.CrossRefGoogle Scholar
Kent, A.J.R., Campbell, I.H. and McCulloch, M.T. (1996) Sm-Nd systematics of hydrothermal scheelite from the Mount Charlotte mine, Kalgoorlie, Western Australia: an isotopic link between gold mineralization and komatiites. Econ. Geol., 90, 2329–35.CrossRefGoogle Scholar
Lahaye, Y., Lambert, D. and Walters, S. (1997) Ultraviolet laser sampling and high resolution inductively coupled plasma mass spectrometry of NIST and BCR-2G glass reference materials. Geostandards Newsletter, 21, 205–14.CrossRefGoogle Scholar
Mariano, A.N. and Ring, P.F. (1975) Europium-activated cathodoluminescence in minerals. Geochim. Cosmochim. Acta, 39, 649–60.CrossRefGoogle Scholar
Marshall, D.J. (1988) Cathodoluminescence of Geological Materials. Unwin Hyman, Boston & London.Google Scholar
Müller, A.G., de Laeter, J.R. and Groves, D.I. (1991) Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn block, Western Australia. Econ. Geol., 86, 780809.CrossRefGoogle Scholar
Ortoleva, P.J. (1994) Geochemical Self-organisation. Oxford University Press, Oxford, New York & Toronto.Google Scholar
Paterson, B.A. and Stephens, W.E. (1992) Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contrib. Mineral. Petrol., 109, 373–85.CrossRefGoogle Scholar
Putnis, A, Fernandez-Diaz, L. and Prieto, M. (1992) Experimentally produced oscillatory zoning in the (Ba,Sr)SO4 solid solution. Nature, 358, 743–5.CrossRefGoogle Scholar
Rakovan, J., Mcdaniel, D. and Reeder, R. (1997) Use of surface-controlled REEsectoral zoning in apatite from Llallagua, Bolivia, to determine a single-crystal Sm-Nd age. Earth Planet. Sci. Let., 146, 329–36.CrossRefGoogle Scholar
Reeder, R.J. and Paquette, J. (1989) Sector zoning in natural and synthetic calcites. Sed. Geol., 65, 239–47.CrossRefGoogle Scholar
Rosing, M.T. (1990) The theoretical effect of metasomatism on Sm-Nd isotopic systems. Geochim. Cosmochim. Acta, 54, 1337–41.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–67.CrossRefGoogle Scholar
Shore, M. and Fowler, A.D. (1996) Oscillatory zoning in minerals: a common phenomenon. Canad. Mineral., 34, 1111–26.Google Scholar
Sibson, R.H., Robert, F.A. and Poulsen, K.H. (1988) High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16, 551–5.2.3.CO;2>CrossRefGoogle Scholar
Sylvester, P. and Ghaderi, M. (1997) Trace element analysis of scheelite by excimer laser ablation-inductively couple plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem. Geol., 141, 4965.CrossRefGoogle Scholar
Tyson, R.M., Hemphill, W.R. and Theisen, A.F. (1988) Effect of W:Mo ratio on the shift of exitation and emission spectra in the scheelite-powellite series. Amer. Mineral., 73, 1145–54.Google Scholar
Uspensky, E., Brugger, J. and Graeser, S. (1998) REE geochemistry systematics of scheelite from the Alps using luminescence spectroscopy: from global regularities to facies control. Schweiz. Mineral. Petrogr. Mitt., 78/1, 3356.Google Scholar
Woods, B.K. (1997) Petrogenesis and geochronology of felsic dykes in the Kalgoorlie Terrane, Kalgoorlie, Western Australia. BSc (Hon.) thesis, Curtin Univ., Western Australia.Google Scholar
Yang, C., Homman, N.P.-O., Malmqvist, K. G., Johansson, L., Halden, N.M. and Barbin, V. (1995) Ionoluminescence: a new tool for nuclear microprobe in geology. Scanning Microsc., 9, 4362.Google Scholar