Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T16:44:29.356Z Has data issue: false hasContentIssue false

Minerals of the arctite supergroup from the Bellerberg volcano xenoliths, Germany

Published online by Cambridge University Press:  26 August 2022

Rafał Juroszek*
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-205 Sosnowiec, Poland
Biljana Krüger
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Beata Marciniak-Maliszewska
Affiliation:
Faculty of Geology, University of Warsaw, Żwirki and Wigury 93, 02-089 Warsaw, Poland
Bernd Ternes
Affiliation:
Retired, Mayen, Germany
*
*Author for correspondence: Rafał Juroszek, Email: rafal.juroszek@us.edu.pl

Abstract

The recently defined arctite supergroup contains nine mineral members defined as hexagonal intercalated antiperovskites, most of which have been found in pyrometamorphic rocks of the Hatrurim Complex, Israel. Three members of this supergroup: nabimusaite, gazeevite and zadovite, were identified for the first time in altered carbonate–silicate xenoliths from the Caspar and Scherer quarries, Bellerberg volcano in Germany. Present work focuses on the chemical, structural and spectroscopic investigation of these minerals and their correlation with holotype counterparts. The apparent differences are mainly related to the chemical composition, types of substitution in the tetrahedral and antiperovskite layers within the crystal structure, and position of bands in the Raman spectra. In the Bellerberg volcano xenoliths, the crystallisation of nabimusaite and gazeevite is caused by high-temperature alteration of early mineral associations (clinker-like phases) and their reaction with melt or gas generated by volcanic activity. In turn, the formation of zadovite is related to the Ba-rich silicate melt that filled the intergranular space between the rock-forming minerals.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Abraham, K., Gebert, W., Medenbach, O., Schreyer, W. and Hentschel, G. (1983) Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium. Contributions to Mineralogy and Petrology, 82, 252258.CrossRefGoogle Scholar
Bentor, Y.K., Gross, S. and Heller, L. (1963) Some unusual minerals from the “Mottled Zone” complex, Israel. American Mineralogist, 48, 924930.Google Scholar
Burg, A., Starinsky, A., Bartov, Y. and Kolodny, Y. (1991) Geology of the Hatrurim Formation (Mottled Zone) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107124.Google Scholar
Chukanov, N.V., Britvin, S.N., Van, K.V., Möckel, S. and Zadov, A.E. (2012) Kottenheimite, Ca3Si(SO4)2(OH)6·12H2O, a new ettringite-group mineral from the Eifel area, Germany. The Canadian Mineralogist, 50, 5563.CrossRefGoogle Scholar
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Blass, G., Varlamov, D.A., Pekov, I.V., Belakovskiy, D.I. and Gurzhiy, V.V. (2015) Calcinaksite, KNaCa(Si4O10)⋅H2O, a new mineral from the Eifel volcanic area, Germany. Mineralogy and Petrology, 109, 397404.CrossRefGoogle Scholar
Fayos, J., Glasser, F.P., Howie, R.A., Lachowski, E. and Perez-Mendez, M. (1985) Structure of dodecacalcium potassium fluoride dioxide tetrasilicate bis(sulphate), KF.2[Ca6(SO4)(SiO4)2O]: a fluorine-containing phase encountered in cement clinker production process. Acta Crystallographica, C41, 814816.Google Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Murashko, M., Włodyka, R. and Dzierżanowski, P. (2015a) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part I. Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rocks of Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 10611072.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2015b) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 10731087.CrossRefGoogle Scholar
Galuskin, E.V., Krüger, B., Krüger, H., Blass, G., Widmer, R. and Galuskina, I.O. (2016) Wernerkrauseite, CaFe3+2Mn4+O6: the first nonstoichiometric post-spinel mineral, from Bellerberg volcano, Eifel, Germany. European Journal of Mineralogy, 28, 485493.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Krzątała, A., Vapnik, Y., Kusz, J., Dulski, M., Gardocki, M., Gurbanov, A.G. and Dzierżanowski, P. (2017) New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus. Mineralogical Magazine, 81, 499513.CrossRefGoogle Scholar
Galuskin, E.V., Krüger, B., Galuskina, I.O., Krüger, H., Vapnik, Y., Wojdyla, J.A. and Murashko, M. (2018a) New Mineral with Modular Structure Derived from Hatrurite from the Pyrometamorphic Rocks of the Hatrurim Complex: Ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel. Minerals, 8, 109.CrossRefGoogle Scholar
Galuskin, E.V., Krüger, B., Galuskina, I.O., Krüger, H., Vapnik, Y., Pauluhn, A. and Olieric, V. (2018b) Stracherite, BaCa6(SiO4)2[(PO4)(CO3)]F, the first CO3-bearing intercalated hexagonal antiperovskite from Negev Desert, Israel. American Mineralogist, 103, 16991706.CrossRefGoogle Scholar
Galuskin, E., Galuskina, I., Krüger, B., KrügeR, H., Vapnik, Y., Krzątała, A., Środek, D. and Zieliński, G. (2021) Nomenclature and Classification of the Arctite Supergroup. Aravaite, Ba2Ca18(SiO4)6[(PO4)3(CO3)]F3O, a New Arctite Supergroup Mineral from Negev Desert, Israel. The Canadian Mineralogist, 59, 191209.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014) Harmunite CaFe2O4: A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierżanowski, P. and Murashko, M. (2017) Gurimite, Ba3(VO4)2 and hexacelsian, BaAl2Si2O8 – two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 10091019.CrossRefGoogle Scholar
Galuskina, I.O., Gfeller, F., Galuskin, E.V., Armbruster, T., Vapnik, Y., Dulski, M., Gardocki, M., Jeżak, L. and Murashko, M. (2019) New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks. Part IV: Dargaite, BaCa12(SiO4)4(SO4)2O3, from Nahal Darga, Palestinian Autonomy. Mineralogical Magazine, 83, 8188.CrossRefGoogle Scholar
Geller, Y.I., Burg, A., Halicz, L. and Kolodny, Y. (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 344, 2536.CrossRefGoogle Scholar
Grapes, R. (2010) Pyrometamorphism. 2nd ed., Springer, Berlin-Heidelberg.CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 80 pp.Google Scholar
Hentschel, G. (1987) Die Mineralien der Eifelvulkane. 2nd ed., Weise Verlag, München, Germany.Google Scholar
Irran, E., Tillmanns, E. and Hentschel, G. (1997) Ternesite, Ca5(SiO4)2SO4, a new mineral from the Ettringer Bellerberg/Eifel, Germany. Mineralogy and Petrology, 60, 121132.CrossRefGoogle Scholar
Juroszek, R., Krüger, H., Galuskina, I., Krüger, B., Jeżak, L., Ternes, B., Wojdyla, J., Krzykawski, T., Pautov, L. and Galuskin, E. (2018) Sharyginite, Ca3TiFe2O8, a new mineral from the Bellerberg Volcano, Germany. Minerals, 8, 308.CrossRefGoogle Scholar
Khomyakov, A.P., Bykova, A.V. and Kurova, T.A. (1983) Arctite, Na2Ca4(PO4)3F, a new mineral. International Geology Review, 25, 739740.CrossRefGoogle Scholar
Krüger, B., Krüger, H., Galuskin, E.V., Galuskina, I.O., Vapnik, Y., Olieric, V. and Pauluhn, A. (2018) Aravaite, Ba2Ca18(SiO4)6(PO4)3(CO3)F3O: modular structure and disorder of a new mineral with single and triple antiperovskite layers. Acta Crystallographica, B74, 492501.Google Scholar
Krzątała, A., Krüger, B., Galuskina, I., Vapnik, Y. and Galuskin, E. (2020) Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel. Minerals, 10, 407.CrossRefGoogle Scholar
Mihajlovic, T., Lengauer, C.L., Ntaflos, T., Kolitsch, U. and Tillmanns, E. (2004) Two new minerals rondorfite, Ca8Mg[SiO4]4Cl2, and almarudite, K(□,Na)2(Mn,Fe,Mg)2(Be,Al)3[Si12O30], and a study of iron-rich wadalite, Ca12[(Al8Si4Fe2)O32]Cl6, from the Bellerberg (Bellberg) volcano, Eifel, Germany. Neues Jahrbuch für Mineralogie - Abhandlungen, 265294.CrossRefGoogle Scholar
Novikov, I., Vapnik, Y. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Petřiček, V., Dušek, M. and Palatinus, L. (2014). Crystallographic Computing System JANA2006: General features, Zeitschrift für Kristallographie, 229, 345352.CrossRefGoogle Scholar
Sokol, E.V., Novikov, I.S., Vapnik, Ye. and Sharygin, V.V. (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady Earth Sciences, 413, 474480.CrossRefGoogle Scholar
Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Deviatiiarova, A.S., Goryainov, S.V., Sharygin, V.V., Khoury, H.N., Karmanov, N.S., Danilovsky, V.A. and Artemyev, D.A. (2020) Ultrahigh-temperature sphalerite from Zn-Cd-Se-rich combustion metamorphic marbles, Daba Complex, Central Jordan: paragenesis, chemistry, and structure. Minerals, 10, 822.CrossRefGoogle Scholar
Sokolova, E.V., Yamnova, N.A., Egorov-Tismenko, Y.K. and Khomyakov, A.P. (1984) Crystal structure of arctite, a new sodium calcium barium phosphate (Na5Ca)Ca6Ba[PO4]6F3. Proceedings of the USSR Academy of Sciences, 274, 7883.Google Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. GSA Reviews in Engineering Geology, 18, 133153.Google Scholar
Supplementary material: File

Juroszek et al. supplementary material

Juroszek et al. supplementary material

Download Juroszek et al. supplementary material(File)
File 459.5 KB