Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T03:37:00.842Z Has data issue: false hasContentIssue false

The NAGRA investigation project for the assessment of repositories for high-level radioactive waste in geological formations

Published online by Cambridge University Press:  05 July 2018

Werner Balderer*
Affiliation:
Physics Institute, University of Berne, Switzerland

Abstract

The first results of isotopic investigations as a part of the hydrogeological study of northern Switzerland are presented. This study is part of the global geological research project of the NAGRA (National Co-operative for the Storage of Radioactive Waste) which is intended to provide the scientific knowledge required for the assessment of the feasibility of safe disposal of highly radioactive waste in the geological formations of the area. The aim of the hydrogeological research programme is to assess the natural conditions in the sedimentary sequence and the underlying granite basement, by regional investigation of hydraulic parameters, isotopic composition, and hydrogeochemistry at all existing wells (boreholes and natural thermal springs) and in 11 to 12 deep-drilled boreholes (to final depth of 1500–2500 m).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J. N., Balderer, W., Bath, A. H., Clausen, H. B., Evans, G. V., Florkowski, T., Goldbrunner, J. E., Ivanovich, M., Loosli, H. H., and Zojer, H. (1983) Environmental isotope studies in two aquifer systems. IAEA-SM-270/93 IAEA, Vienna.Google Scholar
Balderer, W. (1983) Bedentung de lsotopen. Methoden bei der hydrogeologischen Charakterisierung potentieller Endlager standorte fur Hochradioaktive Abfalle. NAGRA Techn. Rept. 83-04 Baden, Switzerland.Google Scholar
Balderer, W. (1984) To the concept of interpretation of the results of isotope and hydrogeochemical determinations for the definition and characterisation of the natural conditions in geological formations. Bull. Centre d'Hydrogeologie, No. 5, Universite de Neuchatel, Switzerland.Google Scholar
Diebold, P., and Sprecher, C. (1983) Seismik-Kampagne 1983/84: Fortfuhrung grossraumiger geophysicalischer Sondierungen. In NAGRA informiert No. 3 and 4. NAGRA, Baden, Switzerland.Google Scholar
Fontes, J. Ch., and Garnier, J. M. (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resources Research, 15, No. 2.CrossRefGoogle Scholar
International Atomic Energy Agency (1983) Isotope Techniques in the Hydrogeological Assessment of Potential Sites for the disposal of High-Level Radioactive Wastes. Techn. Rept. Ser. No. 228, IAEA, Vienna.Google Scholar
Loosli, H. H. (1983) Earth Planet. Sci. Lett. 63, 5162.CrossRefGoogle Scholar
NAGRA (1983a) Techn. Rept. 83-02, Nagra, Baden, Switzerland.Google Scholar
NAGRA (1983b) Techn. Rept. 83-03, NAGRA, Baden, Switzerland.Google Scholar
NAGRA (1984) NAGRA informierte über Ergebnisse ihrer Forschungen in NAGRA Aktuell, No. 5, May 1984, NAGRA, Baden, Switzerland.Google Scholar
Plummer, L. N., Jones, B. F., and Truesdell, A. H. (1976) WATEQF-A FORTRAN IV Version of WATEQ, a computer Program for Calculating Chemical Equilibrium of Natural Waters, Water Resources Investigations 76-13. U.S.G.S.Google Scholar
Reardon, E. J., and Fritz, P. (1978) J. Hydrology, 36, 201-24.CrossRefGoogle Scholar
Schmassmann, H. J., Balderer, W., Kanz, W., and Pekdeger, A. (1984) Regionale Untersuchungen uber die Beschaffenheit der Tiefengrundwasser. NAGRA Techn. Rept. NTB 84-21.Google Scholar
Siegenthaler, U. (1972) Bestimmung der Verweildauer yon Grundwasser im Boden mit radioaktiven Umweltisotopen (14C, Tritium). Gas Wasser Abwasser, No. 9.Google Scholar
Siegenthaler, U. and Oeschger, H. (1980) Nature, 285, 314417.CrossRefGoogle Scholar
Siegenthaler, U., Oeschger, H., and Tongiorgi, E. (1970) Tritium and Oxygen-18 in natural water samples from Switzerland. Isotope Hydrology, IAEA Vienna.Google Scholar
Siegenthaler, U. and Schotterer, U. (1977) Hydrologische Anwen-dungen yon lsotopenmessungen in der Schweiz. Gas Wasser Abwasser, No. 7.Google Scholar
Toth, J. (1962) J. Geophys. Res. 67, 4375-87.CrossRefGoogle Scholar
Vuataz, F. D. (1982) Hydrogeologie, Geochimie et Geo-thermie des eaux Thermates de Suisse et des Regions Limnitrophes, Materiaux pour la geologie de la Suisse. Hydrologie, No. 29. Commission d'Hydrologie, Organe de la Société Helvétique des Sciences Naturelles. Kummerli & Frey, Bern, Switzerland.Google Scholar
Wigley, T. M. L. (1975) Carbon-14 Dating of Groundwater from Closed and Open Systems. Water Resources Research, 11, No. 2.CrossRefGoogle Scholar
Wigley, T. M. L. (1976) Nature, 263, 219-21.CrossRefGoogle Scholar
Wigley, T. M. L., Plummer, L. N., and Pearson, F. J. (1978) Geochim. Cosmochim Acta, 42, 1117-39.CrossRefGoogle Scholar
Yurtsever, Y., and Gat, J. R. (1981) Atmospheric Waters. In Stable Isotope Hydrology: Deuterium and 18-Oxygen in Water Cycle (Gat, J. R. and Gonfiatini, R., eds.) IAEA, Vienna. Techn. Rept. Ser. 210.Google Scholar