Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T20:59:44.039Z Has data issue: false hasContentIssue false

The nature of the upper mantle

Hallimond Lecture to the Mineralogical Society of Great Britain and Ireland, 1980

Published online by Cambridge University Press:  05 July 2018

J. B. Dawson*
Affiliation:
Department of Geology, The University, Sheffield S1 3JD, UK

Abstract

The nature of the upper mantle below the ancient cratonic areas can be deduced by study of the xenolith suites in kimberlites. Studies on the proportions of xenoliths, together with their mineralogy and chemistry, suggest an upper mantle containing an upper harzburgite zone and a lower lherzolite zone, with both of these zones containing chemical and mineralogical variants, together with minor rock types such as glimmerites, MARID-suite rocks, pyroxenites, and eclogites. Isotopic studies of the phases in xenoliths have yielded restricted ranges of values for the isotopic composition of hydrogen, carbon, oxygen, and sulphur which are tentatively identified as the true isotopic values for these elements in the upper mantle. In addition, recent discoveries suggest that diamond may be a primary uppermantle phase.

The textures and fabrics of the xenoliths indicate that plastic deformation has taken place in connection with the intrusive kimberlite event, and also in earlier events unconnected with the kimberlite event. In addition, brittle fracture has been observed, this fracturing often being accompanied by the filling of the ensuing veins and joints by fluids that have crystallized potassium-, titanium-, and water-rich phases; limited metasomatism of peridotite wall rocks accompanies this vein filling and more widespread pervasive metasomatism may also be present.

Although most upper-mantle rocks are now metamorphic, in some rare instances there are relics of earlier rock types that have not been completely obliterated by subsequent metamorphic events; most of these could be attributed to an igneous origin and in most cases during subsequent metamorphism the original rock types have been subjected to increasing pressures and/or lower temperatures.

Although the source of most materials now present at the earth's surface can be directly attributed to some identifiable source within upper-mantle rocks, no source has yet been identified for CO2, N, P, and the rare gases.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allégee, (C. J.), Manhes, (G.), Richard, (P.), Rousseau, (D.) and Shimizu, (N.), 1978. Systematics of Sr, Nd and Pb isotopes in garnet lherzolite nodules in kimberlites. In: Short papers of the 4th Int. Conf. Geochron. Cosmochron. R. B. Zartman, ed., 10-11. U.s. Geol. Surv. Open File Rpt., 78-701, 1978.Google Scholar
Beck, (R.), 1899, Neues von den Afrikanesehen Diamantlagerstätten. Zeit. f. prakt. Geol. 1899, 417-9.Google Scholar
Bishop, (F. C.), Smith, (J. V.), Dawson, (J. B.), 1978. Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite renolithe from African kimberlites. Lithos, 11, 155-73.Google Scholar
Boettcher, (A. L.), 1970. The system CaO-Al2O3-SiO2-H2O at high pressures and temperatures. J. Petrol. 11, 337-79.Google Scholar
Boullier, (A. M.) and Gueguen, (Y.), 1975. S-P mylonites: origin of some mylonites by saperplastic flow. Contrib. Petrol. Mineral. 50, 93104.CrossRefGoogle Scholar
Boullier, (A. M.) and Nicolas, (A.), 1975. Classification of textures and fabrics of peridotite xenoliths from South African klmberlites. Phys. Chem. Earth 9, 467-76.Google Scholar
Boyd, (F. S.), 1973. A pyroxene geotherm. Geochim. Cosmochim. Acta 37, 2533-46.CrossRefGoogle Scholar
Boyd, (F. S.) and Dswson, (J. B.), 1972. Kimberlite garnets and pyroxene-limenite intergrowths. Carnegie Inst. Washington Yearb. 71, 373-8.Google Scholar
Boyd, (F. S.) and England, (J. L.), 1960. The quartz-coesite transition. J. Geophys. Res. 65, 749-56.CrossRefGoogle Scholar
Boyd, (F. S.), Finuerty, (A. A.), 1980. Conditions of origin of natural diamonds of peridotite affinity. J. Geophys. Res.(Kennedy, G. C. Vol.) (in press).Google Scholar
Boyd, (F. S.), and Nixon, (P. H.), 1975. Origins of the ultramafic nodules from the kimberlites of northern Lesotho and the Monastery Mine, South Africa, Phys. Chem. Earth, 431-53.CrossRefGoogle Scholar
Chinner, (G. A.) and Cornell, (D. H.), 1974. Evldence of kimberiite- grospydite reaction. Contrib. mineral. Petrol. 45, 153-60.CrossRefGoogle Scholar
Clark, (G. P.) add Ringwood, (A. E.), 1964. Density distribution and constitution of the mantle. Rev. Geophysics 2, 35-88.Google Scholar
Clarke, (D. B.) and Carswell, (D. A.), 1977. Green garnets from the Newlands kimberlite, Cape province, South Africa. Earth planet. Sci.Letts. 34, 30-8.Google Scholar
Cox, (K. G.), Gurney, (J. J.) Harte, (B.), 1973. Xenoliths from the Natsoku pipe. In: Lesotho kimherlites, Nixon, P. E., ed., 7691, Lesotho Nat. Dev. Corpn., Maseru.Google Scholar
Dawson, (J. B.), 1960. A oomparative study of the geology and petrography of the kimberlites of the Basutoland province. Unpubl. Ph. Thesis, Univ. Leeds.Google Scholar
Dawson, (J. B.), 1979. Veined peridotltes from the Bultfontein Mine. 2nd Kimherlite Symposium, Cambridge, Abst., unpaged.Google Scholar
Dawson, (J. B.), 1980. Kimberlites and their xenolithe. Springer: Heidelberg (in press).CrossRefGoogle Scholar
Dawson, (J. B.), Gurney, (J. J.) amd Lawless, (P. J.), 1975. palaeogeothermal gradients derived from xenoliths from kimberlite. Nature 257, 299-300.Google Scholar
Dawson, (J. B.) and Reid, (A. M.) 1970, A Pyroxene-ilmenite intergrowth from the Monastery Mine, South Africa. Contrib. Mineral. Petrol. 26, 296-301.Google Scholar
Dawson, (J. B.) and Smith, (J. V.), 1975a. Occurence of diamond in a mica-garnet lherzolite from kimberlite. Nature 254, 580-1.Google Scholar
Dawson, (J. B.) and Smith, (J. V.), 1975b. Chromite-silicate intergrowths in upper mantle peridotites, Phys. Chem. Earth 9, 339-50.Google Scholar
Dawson, (J. B.) and Smith, (J. V.), 1977. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 41, 309-34.Google Scholar
Dawson, (J. B.), Smith, (J. V.) and Delaney, (J. S.), 1978. Multiple spinel-garnet peridotite transitions in upper mantle: evidence from a harzhurgite xenolith. Nature 273, 741-3.Google Scholar
Dawson, (J. B.), Smith, (J. V.) and Hervig, (R. L.), 1980. Heterogeneity in upper mantle lherzolites and harzburgites. Phil. Trans. R. Soc. London A 170, 189-97.Google Scholar
Dawson, (J. B.) and Stephens, (W. E.), 1975. Statistical analysis of garnets from kimberlites and associated xenoliths. J. Geol., 83, 589-607.Google Scholar
Deines, (P.). The carbon isotopic composition of diamonds; relationship to diamond shape, colour, occurence and vapour composition. Geocmim. Cosmochim. Acta [in press).Google Scholar
Eggler, (D. H.) and McCallum, (M. E.), 1976. A geotherm from megacrysts in the Sloan kimberlite pipes, Colorado. Carnegie Inst. washington yearb, 75, 538-41.Google Scholar
Ellis, (B. J.) and Green, (D. H.), 1979. An experimental study of the effect of Ca upon the garnet-clinopyroxene Fe-Mg equillbria. Contrib, Mineral. Petrol. 71, 13-22.Google Scholar
Erlank, (A. J.) and Rickard, (R. G.), 1977. Potassic richterite-bearing peridotites from kimberlite and the evidence they provide for upper mantle metasomatism. 2nd Int. Conf. Kimberlites, Sante Fe, Ext, Abst., unpaged.Google Scholar
Fesq, (H. W.), Bibby (D. L), Eramus, (C. S.), Kable (E. J. D.) and Sellschop (J. P. F.), 1975. A comparative trace element study of diamonds from premier, Jagersfontein and Finsch mines, South Africa. Phys. Chem. Earth 9, 817-36.Google Scholar
Frank, (F. C.), 1969 Diamonds and deep fluids in the mantle. In: The application of modern physics to earth and planetary Interiors, Rencorn, S. K., ed., 247-50 New York: Wiley.Google Scholar
Frantsesson, (E. V.), 1968. The petrology of kimberllte. MOSCOW: Nedra.Google Scholar
Frey, (F. A.) and Green, (D. H.), 1974. The mineralogy, geochemistry and orion of lherzollte inclusion in Victorian basanites. Geochim. Cosmochim. Acta 38, 1023-59.Google Scholar
Frey, (F. A.), Green, (D. H.) and Roy, (S. D.), 1978. Integrsted models of basalt petrogenesis; a study of quartz tholsiites to olivine melilititss from south eastern Anstralia utilizing geochemical and experimental petrological data. J. Petrol. 19, 463-513.Google Scholar
Garlick, (G. B.), MacGregor, (I. D.) and Vogel, (D. E.), 1971. Oxygen isotope ratios in eclogites from kimberlites. Science 172, 1025-7.Google Scholar
Gostze, (C.), 1975. Sheared lherzolltes from the Point of view of rock mechanics. Geology 3. 172-3.Google Scholar
Green, (D. H.) and Soholev, (N. V.), 1975. Co-exsting garnets and ilmenites synthesised at high pressures from pyrotite and olivine basanite and their significance for kimberlite assemblages Contrib. Mineral. Petrol. 50, 217-229.Google Scholar
Green, (H. W.) and Guegen, (T.), 1974. Origin of kimberlite pipes by diapiric upwelling in the upper mantle. Nature 249, 617-20.Google Scholar
Green, (T. H.), 1967. An experimental investigation of subsolidus assemblages formed at high pressure in high-alumina basalt, kyanite eclogite and grosspydite compositions. Contrib. Mineral. 16, 84-114.Google Scholar
Grinenko, (L. N.) and Ukhanov (A.V.), 1977. Sulfur levels and isotopic compesitions in upper mantle xenoliths from the Obnazhennaya kimherlite pipe. Geochim. Internet. 1977, 169-71.Google Scholar
Gurney, (J. J.) and Harte, (B.), 1980. Chemical variations in upper mantle nodules from Southern African kimberlites. Phil. Trans. R. Soc. London (in press).Google Scholar
Gurney, (J. J.), Jckob, (W.R.O.) and Dawson, (J. B.), 1979. Megacrysts from the Monastery kimberlite pipe, South Africa. In: The matle sample: inclusions in kimherlites and other volcanics, F. R., Boyd and Meyer, H. O. A., eds., 227-43. Washington; A.G.U.Google Scholar
Gurney, (J. J.) and Switzer, (G. S.), 1973. The discovery of garnets closely related to diamonds in the Finsch pipe, South Africa. Contrib. Mineral. Petal. 39, 103-16.Google Scholar
Gurney, (J. J.), Harte, (B.) and Cox (K.G.), 1975. Mantle xenoliths in the Matsoku kimherlite pipe. Phys. Chem. Earth 9, 507-24.CrossRefGoogle Scholar
Haggerty, (S. E.), Hardie, (R. B.) and McMahon, (B. M.), 1979. The mineral chemistry of ilmenite nodule associations from the Monastery diatreme. In: The mantle sample: inclusions in kimberlites and other volcanics, Boyd, F. R. and Meyer, H. O. A., eds., 249-56. Washington; A.G.U. CrossRefGoogle Scholar
Harris, (J. W.) and Gurney, (J. J.), 1979. Inclusions in diamond. In: The properties of diamond, Field, J. E., ed., 555-91. London; Academic Press.Google Scholar
Harte, (B.), 1977. Rock nomenclature wlth particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. J. Geol. 85, 279-88.Google Scholar
Harte, (B.), 1978. Kimberlite nodules, upper mantle petrology and geotherms. Phil. Trans. Roy. Soc. London A 288, 487-500.Google Scholar
Harte, (B.), Cox, (K. G.) and Gurney, (J. J.), 1975. Petrography and geological history of upper mantle xenollthe from the Matsoku kimberlite pipe. Phys. Chem. Earth 9, 477-506.Google Scholar
Harte, (B.) and Gurney, (J. J.), 1975a. Evolution of olinopyroxene and garnet in am eclogite nodule from the Roberts Victor kimberllte pipe, South Africa. Phys. Chem. Earth 9, 367-88.Google Scholar
Harte, (B.) and Gurney, (J. J.) 1975b. Ore mineral and phlogopite mineralization within ultrammfio nodules from the Matsoku kimberlite pipe, Lesotho. carnegie Inst. Washington Yearb. 74, 528-36.Google Scholar
Harte, (B.), Gurney, (J. J.) and Harris, (J. W.), 1980. The formation of peridotitic suite inclusions in diamond. Contrib. Mineral. Petrol. 72, 181-90.CrossRefGoogle Scholar
Hervig, (R.L.), Smith, (J. V.), Steele, (I. M.), Gurney, (J. J.) , Meyer (H. O. A.), add Harris, (J. W.), 1980. Diamonds: minor elements in silicate inclusions. J. Geophys. Res. (Kennedy, S. C. Vol.) (in press).Google Scholar
Khitarov, (N. I.), Slutski, (A. B.), Pugin, (V. A.), Revin, (N. I.) and Soldatov, (I. A.), 1971. High-alumnia basalt and the machanism of its melting and crystallisation at great and small depths. Geochem. Internat. 8, 631-42.Google Scholar
Kramers, (J. D.), 1979. Lead, uranium, strontium, petassim and rubidium in inclusion-hearing diamonds and mantle-derived xenoliths from southern Africa. Earth Planet. Sci. Letts. 42, 58-70.Google Scholar
Kropotova, (O. I.) and Fodorenko, (B. V.), 1970. carbon isotope composition of dlamond and graphite from eclogite. Geochemisitry Int. 7, 909.Google Scholar
Kuroda, (Y.), Suzuoki, (T.), Matsuo, (S.) and Aoki, (K.), 1975. D/H ratios of co-existing phlogopite and richterite from mica nodules and a peridotite in South Africa kimherlites. Contrib. Mineral. Petrol. 52, 315-18.Google Scholar
Lappin, (M. H.) and Dawson (J, B.), 1975. Two Roberts Victor cumulate eelogites and their equilibration, Phys. Chem. Earth 9, 351-66.Google Scholar
Lawless, (P. J.), Gurney, (J. J.) and Damon, (J. B.), 1979. Polymict peridotites from the Bultfontein and De Beers Mines, Kimherley, South Africa. In: The mantle sample: inclusion in kimherlites and other volcanxcs, Boyd, F. R. and Meyer, H. O. A., eds., 145-55. washington; A.G.U. CrossRefGoogle Scholar
Lock, (N. P.) and Dawson, (J. B.), 1980. Garnet-olivine reaction in the upper mantle: evidence from peridotite xenoliths in the Letseng le Terae kimberlite, Losotho. Trans. R. Soc. Edin: Earth Gci. 71, 47-53.Google Scholar
Mathias, (M.) and Rickwood, (P. C.), 1969. Ultramafic xenoliths in the Matsoku kimberlite pipe. Geol. Soo. S. Africa. Spec. Publ. 2, 359-69.Google Scholar
Mathias, (M.) and Rickwood, (P. C.), Siebert, (J. C.) and Rickwood (P.O.), 1970. Some aspects of the mineralogy and petrology of ultramafic xenoliths in kimberlite. Contrib. Mineral. Petrol. 26, 75-123.Google Scholar
McCallum, (M. E.) and Eggler, (D. H.), 1976. Diamonds in an upper mantle peridotite nodule from kimherlite in southern Wyoming. Science 192, 253-256.Google Scholar
Metier, (J. C. C.), 1979. Peridotite xenoliths and the dynamics of kimberlite intrusion. In: The mantle sample: inclusions in kimberlites and other volcanics, Ro Boyd, F. and Meyer, S. O. A., eds., 197212. washington; A.G.U. Google Scholar
Mitchell, (R. H.), 1975 Theoretical aspects of gaseous and lsetoplo equilibria in the system C-H-O-S with application to kimberlite. Phys. chem. Earth 9, 903-16.Google Scholar
Mitchell, (R. H.), Garnet lherzlites from Somerset Island, N.W.T., Canada and aspects of the nature of perturbed geotherms. Contrib. Mineral. Petrol. 67, 341-347.Google Scholar
Mitchell, (R. H.), and Crockett, (J. H.), 1971. Diamond genesis - a synthesis of opposing views. Mineral. Deposita 6, 392-403.Google Scholar
Nixon, (P. S.) and Boyd, (F. R.), 1973a. petroaenesis of the granular and sheared ultrabasic nodule suite in kimberlite. In: Lesotho kimberlites, Nixon, P. H., ed., 4856. Naseru: Losotho Nat. Dev. Corpn.Google Scholar
Nixon, (P. S.) and Boyd, (F. R.), and Boyd, (F. R.), 1973h. The discrete nodule (megacryst) association in kimherlites from northern Lesotho. In: Lesotho Kimberlites, Mixon, P. S., ed., 6775 Maseru: Lesotho Nat. Dev. Cerpn.Google Scholar
Nixon, (P. S.) and Boyd, (F. R.), and Boyd, (F. R.), Knorring (O. yon) and Rooke, (J. M.), 1963. Kimberlites and associated inclusions of Basutoland: a mineralogical and geochemical study. Am. Mineral. 48, 1090-132.Google Scholar
O'Hara, (M J.), and Mercy, (E. L. P.), 1966. Eclogite, peridotite and pyrope from the Navajo country, Arizona and New Mexico. Am. Mineral. 51, 336-52.Google Scholar
O'Hara, (M J.), and Mercy, (E. L. P.), and Yoder, (H. S.), 1967. Formation and fractionation of basic magmas high pressure. Scott. J. Geol. 3, 67-117.Google Scholar
O'Hara, (M J.), and Mercy, (E. L. P.), and Yoder, (H. S.), Saunders, (M.) and Roy, (E. L. P.), 1975 Garnet peridotite, possible ultrabasic magmas and eologite: interpretation of upper mantle processes in kimberlite, phys. Chem. Earth 9, 681-713.Google Scholar
Pokhilenko, (N. P.), SoboLev, (N. Y.) and Luvrentyev (Yu. G.) , 1977. Xenoliths of diamondiferous ultramafic rocks from Yakutian kimberlites, end Int. Conf. Kimberlites, Santa Fe, Ext. Abst.,Google Scholar
Raheim, (A.) and Green (9. H.), 1974. Experimental determination of the temperature pressure dependence of the Fe-Mg partition coefficient for co-existing garnet and clinopyroxene. Contrib. Mineral. Petrol. 48, 179-203.Google Scholar
Reid, (A. M.), Brown, (R. W.), Dawson, (J. B.), Whitfleld, (G. G.) and Siebert, (J. C.), 1976. Garnet and pyroxene compositions in some diamondiferous eclogites. Contrib. Mineral. Petrol. 58, 203-20.CrossRefGoogle Scholar
Reid, (A. M.), Brown, (R. W.), Dawson, (J. B.), Whitfleld, (G. G.) and Siebert, (J. C.), and Dawson, (J. B.), 1972. Olivine-garnet reaction in peridotites from Tanzania. Lithos 5, 115-24.Google Scholar
Ringwood, (A. E.), 1975. Composition and petrology of the earth's mantle. McGra-Hill, New York.Google Scholar
Ringwood, (A. E.), and Green, (D. H.), 1966. An experimental investigation of the gabbrO-eclogite transformation and some geophysical implication. Tectonophysics 33, 383-427.Google Scholar
Robinson, (D. N.), 1978. The characteristics of natural diamond and their interpretation. Minerals Sci. Engng 10, 5571 Google Scholar
Robinson, (D. N.), 1979. Diamond and graphite in colgate xen oliths from kimbe#]ite" In: The mantle sample: inclusions in kimberlites and other voloagiss, Boyd, F. R. and Meyer, H. O. A., eds., 5058. Washington: A.G.U. Google Scholar
Sheppard, (S. M. F.) and Dawson, (J. B.), 1975 Hydrogen, carbon and imotoge studies of megacryst and matrix mnerals from Lesothan and South African kimherlites. Ph,ys. Chem. Earth 9, 747-63.Google Scholar
Sheppard, (S. M. F.) and Dawson, (J. B.), and Epstein, (S.), 1970. D/H and 180/160 ratios of minerals of possible mantle or lower crystal orion. Earth Planet. Sci. Letts 9, 232-9.Google Scholar
Shimizu, (N.), 1975. Rare each elements in garnets and clinopyroxenes from garnet lherzolite nodules in kimberlites. Earth Planet. Sci. Letts., 25, 26-32.Google Scholar
Smith, (D.) and Levy (S,), 1976. Petrology of the Green Knobs diatreme and implications for the upper mantle below the Colorado Plateau. Earth Planet. Sol. Letts. 29, 107-25.Google Scholar
Smith, (J. V.), Delaney, (J. S.), Hervig, (R. L.) and DaMon, (J. B.), in press. Storage of F and CI in the upper mantle: geochemical implLeatios, idihos.Google Scholar
Sobolev, (N. V.), 1977. Deep-sealed inclusions in kimberlites and the problems of the composition of the upper mantle. Am. Geophys. Union, Washington.Google Scholar
Sobolev, (N. V.), Bartoshinski, (Z. V.), Yefimova, (E. S.), Lavrentyev (Yu. G.) and Pospelova, (L. N.), 1970. O]ivine - garnet - chrome diopside assemblage from Yekutian diamond. Dokl. Akad. Nauk S,S.S.R. Earth Sci. $ectf 192, 124-37.Google Scholar
Sobolev, (N. V.), Kuznetsova, (I. K.) and Zyzin, (N. I.), 1968. The petrology of grospydite xenoliths from the Zagadoehnaya kimberlite pipe in Yakutia. J. Petrol. 9, 253-80.Google Scholar
Sobolev, (N. V.), and Lavrentyev (Yu. Go), 1972. Isomorphic sodium admixture in garnets formed at high pressure. Contribo Mineral. petrol. 31, 1-12.Google Scholar
Sobolev, (N. V.), and Lavrentyev (Yu. Go), Pokhilenko (N. f.) and Usova, (L. V.), 1973. Chrom-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib. Mineral. petrol. 40, 39-52.Google Scholar
Soholev, (V. S.) and Sobolev, (N. V.), 1964. Xenoliths in kimherlige of northern Yakutia and the structure of the mantle. Dokl. Aked. Soi. S,S.S.R. I Earth Soi. Sect. 158, 22-6.Google Scholar
Stephen, (W. E.) and Damon, (J. B.), 1977. Statistical comparison bergen pyroxenes s kimberlites and their associated xenoliths. J. Geol. 85, 431-49.Google Scholar
Sunagawa, (I.), Tsukamoto, (K.) and Yasuda, (T.), 1978. Growth mechanism of natural octahedrel diamonds. Abstr. XI, Gen. Meeting I.M.A. Novosibirsk 2, 12.Google Scholar
Tsai, (H. M.) Shieh, (Y.) and Meyer (H. O. A.), 1979. Mineralogy and $34/S 3s ratios Of sulfides associated with kimberlite, xenoliths and diamonds. In: The mantle sample: inclusion in kimberlites and other volcanics, Boyd, F. R. and Meyer, H. O. A., eds., 87103. Washington, A.G.U.CrossRefGoogle Scholar
Wyllie, (P. J.), 1979a. Kimberlite magmas from the s,ystem peridotite - CO2-H2O. In: Kimberlite, diatremes and diamonds: their geology, petrology and geochemistry, Boys, F. R., Meyer, H. O. A., eds., 319-29. Washington, A.G.U.Google Scholar
Yoder, (H. S.) and Tilley, (C. E.), 1968. Orion of basalt magmas: an experimenntal study of natural and synthetic rock system. J. PetrOl. 3, 342-532.Google Scholar