Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T04:13:05.329Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIX. Axelite, Na14Cu7(AsO4)8F2Cl2

Published online by Cambridge University Press:  21 November 2022

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Sergey N. Britvin
Affiliation:
Dept. of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Anton V. Kutyrev
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
*Author for correspondence: Igor V. Pekov, Email: igorpekov@mail.ru

Abstract

The new mineral axelite, ideally Na14Cu7(AsO4)8F2Cl2, was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with sylvite, halite, arsmirandite, bradaczekite, johillerite, tilasite, ericlaxmanite, lammerite, hematite, tenorite, cassiterite, pseudobrookite, aphthitalite-group sulfates, anhydrite, fluoborite, sanidine and fluorophlogopite. Axelite occurs as tabular, quadratic, rectangular or stronger distorted crystals up to 0.02 × 0.1 × 0.1 mm, sometimes combined in interrupted crusts up to 0.4 mm across overgrowing sylvite. It is transparent, sky-blue, with vitreous lustre. Cleavage was not observed. Dcalc is 3.662 g cm–3. Axelite is optically uniaxial (–), ɛ = 1.650(4) and ω = 1.678(4). Chemical composition (wt.%, electron microprobe data) is: Na2O 22.54, K2O 0.08, CaO 0.04, MgO 0.05, CuO 26.69, P2O5 1.75, V2O5 0.15, As2O5 44.14, SO3 0.04, F 1.57, Cl 3.60, –O=(F,Cl) –1.47, total 99.18. The empirical formula based on O+F+Cl=36 apfu is Na14.37K0.03Ca0.01Mg0.02Cu6.63P0.49V0.03As7.59S0.01O32.36F1.63Cl2.01. Axelite is tetragonal, P4bm, a = 14.5957(2), c = 8.34370(18) Å, V = 1777.51(6) Å3 and Z = 2. The strongest reflections of the powder X-ray diffraction (XRD) pattern [d,Å(I)(hkl)] are: 8.32(44)(001), 5.156(47)(220), 4.168(21)(002), 3.246(34)(222), 3.180(61)(331), 2.747(100)(402), 2.709(36)(511) and 2.580(29)(440). The crystal structure, solved from single-crystal XRD data (R = 4.50%), is unique. It is based on the heteropolyhedral chains built by clusters formed by CuO4Cl square pyramids connected with AsO4 tetrahedra. Adjacent chains are connected via common vertices of AsO4 tetrahedra with CuO4Cl pyramids to form a heteropolyhedral pseudo-framework. Axelite is remotely related, in both structural and chemical aspects, to lavendulan-like minerals and synthetic compounds. The mineral is named in honour of the outstanding Finnish–Russian crystallographer, mineralogist and material scientist Axel Gadolin (1828–1892).

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased 20 March 2021

Associate Editor: Elena Zhitova

References

Brese, N.E. and O'Keeffe, N.E. (1991) Bond-valence parameters for solids. Acta Crystallographica, 47, 192197.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2000) Highly undersaturated anions in the crystal structure of andyrobertsite – calcio-andyrobertsite, a doubly acid arsenate of the form K(Cd,Ca)[Cu2+5(AsO4)4{As(OH)2O2}](H2O)2. The Canadian Mineralogist, 38, 817830.CrossRefGoogle Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York, 341 pp.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Giester, G., Kolitsch, U., Leveret, P., Turner, P. and Williams, P.A. (2007) The crystal structures of lavendulan, sampleite, and a new polymorph of sampleite. European Journal of Mineralogy, 19, 7593.CrossRefGoogle Scholar
Hwu, S.-J., Ulutagay-Kartin, M., Clayhold, J.A., Mackay, R., Wardojo, T.A., O'Connor, C.J. and Krawiec, M. (2002) A new class of hybrid materials via salt inclusion: novel copper(II) arsenates Na5ACu4(AsO4)4Cl2 (A = Rb, Cs) composed of alternating covalent and ionic lattices. Journal of the American Chemical Society, 124, 1240412405.CrossRefGoogle ScholarPubMed
Kimura, K., Sera, M. and Kimura, T. (2016) A2+ cation control of chiral domain formation in A(TiO)Cu4(PO4)4 (A = Ba, Sr). Inorganic Chemistry. 55, 10021004.CrossRefGoogle Scholar
Kimura, K., Toyoda, M., Babkevich, P., Yamauchi, K., Sera, M., Nassif, V., Rønnow, H.M. and Kimura, T. (2018) A-cation control of magnetoelectric quadrupole order in A(TiO)Cu4(PO4)4 (A = Ba, Sr, and Pb). Physical Review B, 97, 134418CrossRefGoogle Scholar
Kimura, K., Urushihara, D., Asaka, T., Toyoda, M., Miyake, A., Tokunaga, M. and Kimura, T. (2020) Synthesis, structure, and anomalous magnetic ordering of the spin-½ coupled square tetramer system K(NbO)Cu4(PO4)4. Inorganic Chemistry, 59, 1098610995.CrossRefGoogle Scholar
Kiriukhina, G., Yakubovich, O., Shvanskaya, L., Volkov, A., Dimitrova, O., Simonov, S., Volkova, O. and Vasiliev, A. (2022) A novel mineral-like copper phosphate chloride with a disordered guest structure: crystal chemistry and magnetic properties. Materials, 15, 1411CrossRefGoogle ScholarPubMed
Meyer, S. and Müller-Buschbaum, H. (1997) Cu4O12 groups built of square planar CuO4 polygons in the barium vanadyl oxocuprate(II) phosphate Ba(VO)Cu4(PO4)4. Zeitschrift für Anorganische und Allgemeine Chemie, 623, 16931698.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133143.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 17371753.CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639646.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855867.CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2017b) Axelite, IMA 2017-015a. CNMNC Newsletter No. 38, August 2017, page 1038. Mineralogical Magazine, 81, 10331038.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018a) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877888.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Y. (2019a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 83, 453458.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Ksenofontov, D.A., Pautov, L.A., Sidorov, E.G., Britvin, S.N., Vigasina, M.F. and Pushcharovsky, D.Yu. (2019b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4. Mineralogical Magazine, 83, 485495.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Yapaskurt, V.O., Belakovskiy, D.I., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Scheidl, K.S. (2019c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XI. Anatolyite, Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6. Mineralogical Magazine, 83, 633638.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Scheidl, K.S. (2019d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XII. Zubkovaite, Ca3Cu3(AsO4)4. Mineralogical Magazine, 83, 879886.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2020a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIII. Pansnerite, K3Na3Fe3+6(AsO4)8. Mineralogical Magazine, 84, 143151.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Yu. (2020b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIV. Badalovite, NaNaMg(MgFe3+)(AsO4)3, a member of the alluaudite group. Mineralogical Magazine, 84, 616622.CrossRefGoogle Scholar
Pekov, I.V., Agakhanov, A.A., Zubkova, N.V., Koshlyakova, N.V., Shchipalkina, N.V., Sandalov, F.D., Yapaskurt, V.O., Turchkova, A.G. and Sidorov, E.G. (2020c) Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique. Russian Geology and Geophysics, 61, 675688.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Yu. (2021a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XV. Calciojohillerite, NaCaMgMg2(AsO4)3, a member of the alluaudite group. Mineralogical Magazine, 85, 215223.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Yu. (2021b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVI. Yurgensonite, K2SnTiO2(AsO4)2, the first natural tin arsenate, and the katiarsite–yurgensonite isomorphous series. Mineralogical Magazine, 85, 698707.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V., Agakhanov, A.A., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2022a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVII. Paraberzeliite, NaCaCaMg2(AsO4)3, an alluaudite-group member dimorphous with berzeliite. Mineralogical Magazine, 86, 103111.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V., Agakhanov, A.A., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2022b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVIII. Khrenovite, Na3Fe3+2(AsO4)3, the member with the highest sodium in the alluaudite supergroup Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.64Google Scholar
Pushcharovsky, D.Yu., Zubkova, N.V., Teat, S.J., MacLean, E.J. and Sarp, H. (2004) Crystal structure of mahnertite. European Journal of Mineralogy, 16, 687692.CrossRefGoogle Scholar
Qiu, C.Q., He, Z.Z., Cui, M.Y., Chen, S.H. and Tang, Y. (2017) Synthesis, structure and magnetic properties of new layered phosphate halides Sr2Cu5(PO4)4X2⋅8H2O (X = Cl, Br) with a crown-like building unit. Dalton Transactions, 46, 44614466.CrossRefGoogle Scholar
Rigaku, OD (2018) CrysAlisPro Software System, v. 1.171.39.46. Rigaku Corporation, Oxford, UK.Google Scholar
Sarp, H. and Černy, R. (2004) Calcio-andyrobertsite-2O, KCaCu5(AsO4)4[AsO2(OH)2]⋅2H2O: its description, crystal structure and relation with calcio-andyrobertsite-1M. European Journal of Mineralogy, 16, 163169.CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101119.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Süsse, P. and Tillmann, B. (1987) The crystal structure of the new mineral richelsdorfite, Ca2Cu5Sb(Cl/(OH)6/(AsO4)4)⋅6H2O. Zeitschrift für Kristallographie, 179, 323334.CrossRefGoogle Scholar
Yakubovich, O.V., Steele, I.M., Kiriukhina, G.V. and Dimitrova, O.V. (2015) A microporous potassium vanadyl phosphate analogue of mahnertite: hydrothermal synthesis and crystal structure. Zeitschrift für Kristallographie, 230, 337344.CrossRefGoogle Scholar
Yue, X., Ouyang, Z., Cui, M., Yin, L., Xiao, G., Wang, Z., Liu, J., Wang, J., Xia, Z., Huang, X. and He, Z. (2018) Syntheses, structure, and 2/5 magnetization plateau of a 2D layered fluorophosphate Na3Cu5(PO4)4F⋅4H2O. Inorganic Chemistry, 57, 31513157.CrossRefGoogle Scholar
Zubkova, N.V., Pushcharovsky, D.Y., Sarp, H., Teat, S.J. and MacLean, E.J. (2003) Crystal structure of zdenĕkite NaPbCu5(AsO4)4Cl⋅5H2O. Crystallography Reports, 48, 939943.CrossRefGoogle Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material

Download Pekov et al. supplementary material(File)
File 568 KB