Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:31:51.544Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVI. Yurgensonite, K2SnTiO2(AsO4)2, the first natural tin arsenate, and the katiarsite–yurgensonite isomorphous series

Published online by Cambridge University Press:  28 May 2021

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Anna G. Turchkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
*Author for correspondence: Igor V. Pekov, Email: igorpekov@mail.ru

Abstract

The new mineral yurgensonite, ideally K2SnTiO2(AsO4)2, the first natural arsenate with species-defining tin, and the continuous isomorphous series between yurgensonite and katiarsite KTiO(AsO4) are described from sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. Yurgensonite and a Sn-bearing variety of katiarsite are associated closely with one another and with badalovite, pansnerite, yurmarinite, achyrophanite, arsenatrotitanite, hatertite, khrenovite, svabite, sanidine, hematite, cassiterite, rutile and aphthitalite-group sulfates. Yurgensonite occurs as sword-shaped crystals up to 0.01 mm × 0.05 mm × 1 mm or acicular to hair-like individuals up to 1 mm long, typically forming radial aggregates up to 2 mm across. It is transparent, colourless, white or pale beige, with vitreous lustre. The mineral is brittle, cleavage was not observed. Dcalc is 3.877 g cm-3. Yurgensonite is optically biaxial (–), α = 1.764(6), β = 1.780(6), γ = 1.792(6) and 2Vmeas. is large. Chemical composition (wt.%, electron-microprobe; holotype) is: Na2O 0.51, K2O 16.27, Rb2O 0.12, Al2O3 0.26, Fe2O3 4.33, SiO2 0.29, TiO2 10.17, SnO2 22.01, P2O5 0.14, V2O5 0.19, As2O5 40.20, Sb2O5 4.88, SO3 0.28, total 99.65. The empirical formula based on 10 O apfu is (K1.92Na0.09Rb0.01)Σ2.02(Sn0.81Ti0.71Fe3+0.30Sb5+0.17Al0.03)Σ2.02(As1.945Si0.03S0.02P0.01V0.01)Σ2.015O10. Yurgensonite is orthorhombic, Pna21, a = 13.2681(6), b = 6.6209(3), c = 10.8113(5) Å, V = 949.74(7) Å3 and Z = 4. The crystal structure was solved from single-crystal X-ray diffraction data, R = 5.02%. Yurgensonite belongs to the KTP-structure type. It is a Ti,Sn-ordered analogue of katiarsite. The structure contains chains of corner-linked alternating crystallographically non-equivalent octahedra M(1) and M(2). In yurgensonite, Sn4+ prevails in the M(2)O6 octahedron whereas the M(1) site is Ti4+-dominant. The new mineral is named in honour of the Russian mineralogist, geochemist and specialist in studies of ore deposits Professor Georgiy Aleksandrovich Yurgenson (born 1935).

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Koichi Momma

Deceased 20 March 2021

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1990a) Handbook of Mineralogy, Volume II. Silica, Silicates. Mineral Data Publishing, Tucson, AZ, 904 pp.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1990b) Handbook of Mineralogy, Volume III. Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson, AZ, 628 pp.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Bulka, G.R., Vinokurov, V.M., Nizamutdinov, N.M. and Khasanova, N.M. (1987) Pseudosymmetry of spin-Hamiltonian tensor in coordination polyhedral of Fe3+ in KTiOPO4 by EPR data. Soviet Physics – Crystallography, 32, 408413.Google Scholar
Churakov, S.V., Tkachenko, S.I., Korzhinskii, M.A., Bocharnikov, R.E. and Shmulovich, K.I. (2000) Evolution of composition of high-temperature fumarolic gases from Kudryavy volcano, Iturup, Kuril Islands: the thermodynamic modeling. Geochemistry International, 38, 436451.Google Scholar
Crennell, S.J., Owen, J.J., Cheetham, A.K., Kaduk, J.A. and Jarman, R.H. (1991) A combined X-ray and neutron powder diffraction study of K(Ti½Sn½)OPO4. European Journal of Solid State Inorganic Chemistry, 28, 397407.Google Scholar
Crennell, S.J., Cheetham, A.K., Kaduk, J.A. and Jarman, R.H. (1992) Isomorphous substitution in non-linear optical KTiOPO4: Powder diffraction studies of K0.5Rb0.5SnOPO4, K0.5Na0.5Ti0.5Sn0.5OPO4, Na0.5Rb0.5Ti0.5Sn0.5OPO4 and K0.5Rb0.5Ti0.5Sn0.5OPO4. Journal of Materials Chemistry, 2, 785792.10.1039/jm9920200785CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gaite, J.M., Stenger, J.F., Dusausoy, Y., Marnier, G. and Rager, H. (1991) Electron paramagnetic resonance study of paramagnetic defect centres Fe3+ and Cr3+ in KTiOPO4. Journal of Physics: Condensed Matter, 3, 78777886.Google Scholar
Krotova, O.D., Sorokina, N.I., Verin, I.A., Voronkova, V.I., Yanovskii, V.K. and Simonov, V.I. (2003) Structure and properties of single crystals of tin-doped potassium titanyl phosphate. Crystallography Reports, 48, 925932.10.1134/1.1627433CrossRefGoogle Scholar
Lin, K.-J., Lin, H.-C. and Lii, K.-H. (1995) Synthesis and characterization of ASnOAsO4 (A = K and Rb). Journal of the Chinese Chemical Society (Taipei), 42, 913918.10.1002/jccs.199500125CrossRefGoogle Scholar
Mashkovtsev, R.I. and Isaenko, L.I. (1996) Spectroscopic study of KTiOAsO4 single crystals doped with In, Sc, Fe. Physica Status Solidi, B198, 577585.10.1002/pssb.2221980203CrossRefGoogle Scholar
Mayo, S.C., Thomas, P.A., Teat, S.J., Loiacono, G.M. and Loiacono, D.N. (1994) Structure and nonlinear optical properties of KTiOAsO4. Acta Crystallographica, B50, 655662.10.1107/S0108768194006300CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York.Google Scholar
Nespolo, M. and Ferraris, G. (2000): Twinning by syngonic and metric merohedry. Analysis, classification and effects on the diffraction pattern. Zeitschrift für Kristallographie, 215, 7781.10.1524/zkri.2000.215.2.77CrossRefGoogle Scholar
Northrup, P.A., Parise, J.B., Cheng, L.K., Cheng, L.T. and McCarron, E.M. (1994) High-temperature single-crystal X-ray diffraction studies of potassium and (cesium, potassium) titanyl arsenates. Chemistry of Materials, 6, 434440.10.1021/cm00040a017CrossRefGoogle Scholar
Novikova, N.E., Sorokina, N.I., Verin, I.A., Alekseeva, O.A., Orlova, E.I., Voronkova, V.I. and Tseitlin, M. (2018) Structural reasons for the nonlinear optical properties of KTP family single crystals. Crystals, 8, 283.10.3390/cryst8070283CrossRefGoogle Scholar
Pautov, L.A. and Agakhanov, A.A. (1997) Berezanskite, KLi3Ti2Si12O30, a new mineral. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 126, 7580 [in Russian].Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.10.1180/minmag.2014.078.4.10CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133143.10.1180/minmag.2015.079.1.11CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 17371753.10.1180/minmag.2015.079.7.02CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639646.10.1180/minmag.2016.080.007CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855867.10.1180/minmag.2016.080.027CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.10.1180/minmag.2016.080.146CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018a) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.10.1127/ejm/2018/0030-2718CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877888.10.1180/minmag.2017.081.067CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Y. (2019a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 83, 453458.10.1180/mgm.2018.134CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Ksenofontov, D.A., Pautov, L.A., Sidorov, E.G., Britvin, S.N., Vigasina, M.F. and Pushcharovsky, D.Yu. (2019b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4. Mineralogical Magazine, 83, 485495.10.1180/mgm.2018.155CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Yapaskurt, V.O., Belakovskiy, D.I., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Scheidl, K.S. (2019c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XI. Anatolyite, Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6. Mineralogical Magazine, 83, 633638.10.1180/mgm.2019.11CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Scheidl, K.S. (2019d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XII. Zubkovaite, Ca3Cu3(AsO4)4. Mineralogical Magazine, 83, 879886.10.1180/mgm.2019.33CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2019e) Yurgensonite, IMA 2019-059. CNMNC Newsletter No. 52; Mineralogical Magazine, 83, 887893, https://doi.org/10.1180/mgm.2019.73Google Scholar
Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Britvin, S.N., Turchkova, A.G., Sidorov, E.G., Pushcharovsky, D.Y. (2020a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIII. Pansnerite, K3Na3Fe3+6(AsO4)8. Mineralogical Magazine, 84, 143151.10.1180/mgm.2019.48CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Sidorov, E.G., Pushcharovsky, D.Yu. (2020b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIV. Badalovite, NaNaMg(MgFe3+)(AsO4)3, a member of the alluaudite group. Mineralogical Magazine, 84, 616622.10.1180/mgm.2020.43CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Yu. (2021) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XV. Calciojohillerite, NaCaMgMg2(AsO4)3, a member of the alluaudite group. Mineralogical Magazine, 85, 215223.10.1180/mgm.2021.2CrossRefGoogle Scholar
Phillips, M.L.F., Harrison, W.T.A., Stucky, G.D., McCarron III, E.M., Calabrese, J.C. and Gier, T.E. (1992) Effects of substitution chemistry of in the KTiOPO4 structure field. Chemistry of Materials, 4, 222233.10.1021/cm00019a041CrossRefGoogle Scholar
Sandalov, F.D., Pekov, I.V., Koshlyakova, N.N., Yapaskurt, V.O., Agakhanov, A.A., Sidorov, E.G. and Britvin, S.N. (2020) Rutile enriched with chalcophile elements (Sb, Sn, Te) and Ti-rich varieties of tripuhyute and cassiterite from sublimates of active fumaroles at the Tolbachik volcano (Kamchatka, Russia). Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 149, 2241 [in Russian].Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.10.1107/S0567739476001551CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101119.10.5194/ejm-32-101-2020CrossRefGoogle Scholar
Stucky, G.D., Phillips, M.L.F. and Gier, T.E. (1989) The potassium titanyl phosphate structure field: a model for new nonlinear optical materials. Chemistry of Materials, 1, 492509.10.1021/cm00005a008CrossRefGoogle Scholar
Watson, G.H. (1991) Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals. Journal of Raman Spectroscopy, 22, 705713.10.1002/jrs.1250221116CrossRefGoogle Scholar
Weber, M.J. (editor) (2003) Handbook of Optical Materials. CRC Press, Boca Raton, Florida, USA.Google Scholar
Zelenski, M., Malik, N. and Yu, Taran. (2014) Emissions of trace elements during the 2012–2013 effusive eruption of Tolbachik volcano, Kamchatka: enrichment factors, partition coefficients and aerosol contribution. Journal of Volcanology and Geothermal Research, 285, 136149.10.1016/j.jvolgeores.2014.08.007CrossRefGoogle Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material

Download Pekov et al. supplementary material(File)
File 385.2 KB