Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T01:33:22.819Z Has data issue: false hasContentIssue false

New data on glaucocerinite

Published online by Cambridge University Press:  05 July 2018

Gunnar Raade
Affiliation:
Mineralogisk-Geologisk Museum, Universitetet i Oslo, Sars gate 1, N-0562 Oslo 5, Norway
C. J. Elliott
Affiliation:
Mineralogisk-Geologisk Museum, Universitetet i Oslo, Sars gate 1, N-0562 Oslo 5, Norway
V. K. Din
Affiliation:
Mineralogisk-Geologisk Museum, Universitetet i Oslo, Sars gate 1, N-0562 Oslo 5, Norway

Abstract

The strongest lines in the X-ray powder diffraction pattern of type material of glaucocerinite from Laurion (Greece), indexed on a hexagonal pseudocell, are 10.9 (100) (003), 5.45 (90) (006), 3.63 (80) (009), 2.62 (60) (012), 2.46 (60) (015), 2.231 (50) (018), and 1.981 Å (50) (0.1.11). The pseudocell parameters are a 3.0700(8), c 32.65(1) Å. Chemical analysis of topotype material yields the formula [(Zn,Cu)5Al3(OH)16] [(SO4)1.5·9H2O] based on a pyroaurite-like structure. The pseudocell parameters for this sample are a 3.057(3), c 32.52(5) Å. Optical data are 2Vα ⋍ 60°, α 1.540, β 1.554, γ 1.562; D(meas.) = 2.4±0.1 g/cm3, D(calc.) = 2.33 g/cm3. So-called ‘woodwardite’ from Caernarvonshire, Wales, is identified as the Cuanalogue of glaucocerinite. An ‘11 Å mineral’ occurring together with carrboydite in Western Australia is shown to be the Ni-analogue of glaucocerinite. Alleged cotype glaucocerinite from Laurion is related to woodwardite and has the formula [(Zn,Cu)2Al(OH)6][(SO4)0.5 · 3H2O]. This is a cation-ordered pyroaurite-type structure with hexagonal cell parameters a 5.306(2), c 26.77(2) Å. The strongest X-ray powder lines occur at 8.9 (100) (003), 4.47 (90) (006), 2.55 (60) (113), and 2.28 Å (50) (116).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Royal Postgraduate Medical School, Hammersmith Hospital, London W12 0HS, England.

References

Allmann, R. (1968) Acta Crystallogr. B24, 972-7.CrossRefGoogle Scholar
Allmann, R. (1970) Chimia, 24, 99-108.Google Scholar
Allmann, R. and Jepsen, H. P. (1969) Neues Jahrb. Mineral., Monatsh. 544-51.Google Scholar
Allmann, R. and Lohse, H.-H. (1966) Ibid. 161-81.Google Scholar
Bish, D. L. (1980) Bull. Minbral. 103, 170-5.CrossRefGoogle Scholar
Bish, D. L. and Livingstone, A. (1981) Mineral. Mag. 44, 339 43.CrossRefGoogle Scholar
Brindley, G. W. (1979) Ibid. 43, 337-40.Google Scholar
Brindley, G. W. and Bish, D. L. (1976) Nature, 263, 353.CrossRefGoogle Scholar
Din, V. K., and Jones, G. C. (1978) Chem. Geol. 23, 347-52.CrossRefGoogle Scholar
Dittler, E., and Koechlin, R. (1932) Centralbl. Mineral. A, 13-17.Google Scholar
Gastuche, M. C., Brown, G., and Mortland, M. M. (1967) Clay Minerals, 7, 177-92.CrossRefGoogle Scholar
Hashi, K., Kikkawa, S., and Koizumi, M. (1983) Clays and Clay Minerals, 31, 152-4.CrossRefGoogle Scholar
Hey, M. H. (1962) An index of mineral species and varieties arranged chemically, 2nd edn. British Museum (Natural History), London, p. 438.Google Scholar
Hudson, D. R., and Bussel, M. (1981) Mineral. Mag. 44, 345-50.CrossRefGoogle Scholar
Ingram, L., and Taylor, H. F. W. (1967) Ibid. 36, 465-79.Google Scholar
Jambor, J. L., and Boyle, R. W. (1964) Can. Mineral. 8, 116-20.Google Scholar
Lapham, D. M. (1965) Am. Mineral. 50, 1708-16.Google Scholar
Larsen, E. S., and Berman, H. (1934) U.S. Geol. Survey Bull. 848, pp. 30-2.Google Scholar
Mandarino, J. A. (1976) Can. Mineral. 14, 498-502.Google Scholar
Meixner, H. (1940) Zentralbl. Mineral. A, 238-44.Google Scholar
Miyata, S. (1980) Clays and Clay Minerals, 28, 50-6.CrossRefGoogle Scholar
Nickel, E. H. (1976) Mineral. Mag. 40, 644-7.CrossRefGoogle Scholar
Nickel, E. H. and Clarke, R. M. (1976) Am. Mineral. 61, 366-72.Google Scholar
Nickel, E. H. and Wildman, J. E. (1981) Mineral. MaO. 44, 333-7.CrossRefGoogle Scholar
Palache, C., Berman, H., and Frondel, C. (1951) The System of Mineralogy, Vol. II, 7th edn. John Wiley and Sons, Inc., New York, p. 574.Google Scholar
Raade, G., Elliott, C. J., and Fejer, E. E. (1977) Mineral. Mag. 41, 6570.CrossRefGoogle Scholar
Strunz, H. (1970) Mineralogische Tabellen, 5th edn. Akademische Verlagsgesellschaft, Geest & Portig K.-G., Leipzig, p. 294.Google Scholar
Taylor, H. F. W. (1969) Mineral. Mag. 37, 338-42.CrossRefGoogle Scholar
Taylor, H. F. W. (1973) Ibid. 39, 377-89.Google Scholar
Weil, R., Siat, A., and Fluck, P. (1975) Bull. Sci. Gkol. Univ. Strasbourg, 28, 261-82.Google Scholar
Yakhontova, L. K., Postnikova, V. P., Vlasova, Ye. V., and Sergeyeva, N. Ye. (1981) Dokl. Akad. Nauk SSSR, 256, 1221-5.Google Scholar